Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
In the 19th century it became a penal colony for British prisoners, and today Tasmania’s most famous attraction is the Port Arthur Historic Site, wher...полностью>>
'Программа'
Программа «Профилактика возрастной патологии и ускоренного старения, снижение преждевременной смертности от биологических причин и продление трудоспос...полностью>>
'Документ'
ООО “Евростар”, именуемое в дальнейшем “Исполнитель”, в лице Генерального директора Севковой Нины Александровны, действующего на основании Устава, с о...полностью>>
'Отчет'
ФГУП «Канашское ПрОП» Минтруда России за отчетный период с 01 января 2012 года по 31 декабря 2012 года, подлежащих размещению на официальном сайте Пре...полностью>>

Главная > Документ

Сохрани ссылку в одной из сетей:
Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

После этого необходимо проверить гипотезу о том, что отклонения от скользящего тренда представляют собой стационарный процесс. С этой целью рассчитывается автокорреляционная функция. Если значения автокорреляционной функции уменьшаются от периода к периоду, то пятая предпосылка данного метода выполняется.

Далее рассчитываем приросты по формуле

(14.34)

Средняя приростов вычисляется по формуле

, (14.35)

где - гармонические коэффициенты, удовлетворяющие следующим условиям:

> 0; (t = 1, 2, … , n - 1); (14.36)

.

Данное выражение позволяет более поздней информации придавать большие веса, так как приросты весов обратно пропорциональны времени, которое отделяет раннюю информацию от поздней для момента t = n.

Если самая ранняя информация имеет вес , то вес информации, относящейся к следующему моменту времени, равен:

. (14.37)

В общем виде ряд гармонических весов определяют по формуле:

, (t = 2, 3, … , n - 1); (14.38)

или .

Отсюда .

Для того чтобы получить гармонические коэффициенты нужно гармонические веса mt+1 разделить на (n - 1), то есть:

. (14.39)

Далее прогнозирование сводится, так же как и при простых методах прогноза, путем прибавления к последнему значению ряда динамики среднего прироста.

14.4. Прогнозирование на основе кривых роста

Прогнозирование социально-экономических явлений на основе кривых роста (кривых насыщения) стало применяться сравнительно недавно. Впервые эти методы были использованы в начале ХХ века для прогнозирования роста биологических популяций. Однако кривые роста хорошо себя зарекомендовали и при прогнозировании социально-экономических явлений. Однако их применение в этом случае требует соблюдения определенных условий.

  1. Исходный временной ряд должен быть очень длинным (30-40 лет).

  2. Исходный временной ряд не должен иметь скачков, и тенденция такого ряда должна описываться достаточно плавной кривой.

  3. Использование кривых роста в прогнозировании социально-экономических явлений может давать достаточно хорошие результаты, если предел насыщения будет определен сравнительно точно.

Следует отметить, что кривые роста отражают кумулятивные возрастания к определенному заранее максимальному пределу.

Особенностью кривых роста является то, что абсолютные приращения уменьшаются по мере приближения к пределу. Однако процесс роста идет до конца.

Значение кривых роста как методов статистического прогнозирования социально-экономических явлений состоит в том, что они способствуют эмпирически правильному воспроизводству тенденции развития исследуемого явления.

Наиболее распространенными кривыми роста, используемыми в статистической практике прогнозирования, являются кривая Гомперца и кривая Перля-Рида.

Обе кривые, в общем, похожи одна на другую и графически изображаются S-образной кривой:

Особенностью уравнений этих кривых является то, что их параметры могут быть определены методом наименьших квадратов лишь приближенно. Поэтому для расчета этих кривых используется ряд искусственных методов, основанных на разбиении исходного ряда динамики на отдельные группы.

Например, для того чтобы осуществить прогноз на основе кривой Гомперца (она названа так в честь английского статистика и математика, впервые применившего эту кривую для прогнозирования в страховании), необходимо выполнить следующее:

  1. кривая описывается уравнением

y = a ´ bcx; (14.40)

  1. прологарифмировав уравнение, получаем

lg y = lg a + (lg b) ´ cx, (14.41)

где lg a – логарифм максимального значения, к которому

приближается прогнозный уровень явления;

lg b – расстояние, которое отделяет в каждый данный

момент значение уровня от его максимального

значения;

с – имеет значение от нуля до единицы;

х – начало на шкале х, то есть время, год, к которому

относится первое значение уровня (t = 0, 1, 2, … , n);

  1. затем весь ряд динамики разбивается на три части:

длины ряда; (14.42)

  1. для каждой выделенной группы рассчитываются суммы S1, S2,

S3;

  1. затем рассчитываются первые разности по этим суммам:

d1 = S2 – S1; d2 = S3 – S2; (14.43)

  1. на основании этих расчетов получим параметры уравнения с, lga,

lg b, которые рассчитываются следующим образом:

,

где n – число уровней ряда в каждой части;

, (14.44)

Чтобы использовать данную кривую для экстраполяции за пределы исходного ряда динамики, достаточно подставить соответствующее значение xt в уравнение кривой.

Наряду с кривой Гомперца достаточно широкое распространение получила также кривая Перля-Рида, которая в социально-экономической статистике впервые была использована для демографических расчетов американским учеными – биологом Р. Перлем и математиком Л. Ридом.

Эта кривая выражает модифицированную геометрическую прогрессию, в которой возрастание затухает по мере приближения к некоторому определенному пределу. Максимальный предел устанавливается, прежде всего, на основании конкретного изучения исследуемого социально-экономического явления.

Так же как и кривая Гомперца, кривая Перля-Рида использует тот же искусственный прием для определения параметров кривой. Однако следует отметить, что по сравнению с кривой Гомперца прогнозные данные, полученные по этой кривой, имеют некоторую неопределенность.

Кривая Перля-Рида описывается уравнением:

(14.45)

Параметры уравнения находятся следующим образом:

; ; (14.46)

Из приведенных расчетов видно, что параметры уравнения кривой Перля-Рида определяются так же, как и параметры кривой Гомперца, за исключением того, что в последнем случае не используется прием логарифмирования. Кроме того, нужно иметь в виду, что в зависимости от масштаба данных величина умножается на 10000, 100000 или 1000000.

14.5. Прогнозирование рядов динамики, не имеющих тенденции

При решении конкретных прикладных задач анализа социально-экономических явлений исследователь сталкивается с временными рядами социально-экономических показателей, в которых отсутствует тенденция развития, то есть изменение значений уровней исходного ряда динамики носит стационарный характер.

Однако временные ряды не имеющие тенденции, на практике, встречаются крайне редко.

В этой связи, прежде чем приступать к прогнозированию, необходимо всеми известными методами убедиться в том, что тенденция в исследуемом временном ряду действительно отсутствует. Только после того, как установлено отсутствие тенденции и гипотезы о наличии тенденции отвергнуты всеми методами, следует использовать те методы прогнозирования, которые дают возможность установить развитие явления при отсутствии тенденции.

Особенность прогнозирования данных временных рядов заключается в том, что использование методов статистического прогнозирования, основанных на получении точечной или интервальной количественной вероятностной характеристики изучаемого явления в будущем с относительно высокой степенью достоверности, невозможно.

В этом случае для прогнозирования таких рядов применяются вероятностные статистические методы прогнозного оценивания.

Вероятностные методы оценивания не позволяют дать точечную количественную характеристику прогнозируемого явления. Они дают возможность лишь оценить вероятность того, что значение прогнозируемого явления на каждый следующий (с отдалением) период упреждения будет больше или меньше значения последнего уровня исходного временного ряда. Вероятностные методы прогнозирования дают менее точные прогнозные оценки и обладают большей степенью неопределенности.

На практике, в анализе временных рядов социально-экономических явлений, не имеющих тенденции, наибольшее распространение среди вероятностных методов прогнозирования, получил метод, в основе которого лежит использование закона распределения Пуассона (распределение редких явлений) с плотностью

r = е. (14.47)

Особенность метода заключается в том, что всегда прогнозируется благоприятная тенденция.

Этапы реализации данного метода следующие:

  1. Осуществляется последовательное сравнение каждого следующего значения уровня исходного временного ряда со значением предыдущего уровня. При этом знаком «+» отмечается возрастание значения уровня, а «-» - убывание. Если последующий уровень больше предыдущего, то ставится знак «+», меньше предыдущего – «-». Причем первый уровень всегда отмечается знаком «-». Знак «+» показывает, сколько периодов времени исследуемое явление возрастает и этот временный период принято считать благоприятной тенденцией.

  2. Строится специальная таблица, характеризующая виды тенденции, длину благоприятной тенденции (t) и частоту повторения благоприятной тенденции (f):

Виды тенденций

Длина благоприятной тенденции, t

Частота, f

- -

- + -

- + + -

- + + + -

0

1

2

3

При этом две первые графы таблицы: вид тенденции и длина благоприятной тенденции существуют априори и исследователь только частотой определяет наличие того или иного вида тенденции в исследуемом временном ряду.

Длина же благоприятной тенденции (t) определяется числом плюсов между двумя минусами в ряду динамики «+» и «-».

  1. На основе данных таблицы определяется средняя длина благоприятной тенденции по формуле вида:

, (14.48)

где t - длина благоприятной тенденции;

f - частота повторения благоприятной тенденции.

Средняя длина благоприятной тенденции показывает, сколько в среднем в рассматриваемом временном ряду, наблюдалось совершение благоприятной тенденции.

На основе полученной средней длины благоприятной тенденции определяется показатель, характеризующий интенсивность прерываний этой благоприятной тенденции (), который определяется по формуле:

(14.49)

Данный показатель характеризует сколько в среднем раз за рассматриваемый период времени совершалось прерывание благоприятной тенденции.

  1. Вероятность благоприятной тенденции определяется на основе следующей модификации закона распределения Пуассона:

, (14.50)

где р - вероятность совершения благоприятной тенденции;

- интенсивность прерываний благоприятной тенденции;

L - период упреждения (число лет сохранения благоприятной

тенденции).

Глава 15. Прогнозирование многомерных временных рядов

Приведение данных к сопоставимому виду с точки зрения автокорреляции, коллинеарности и временного лага является предварительным условием построения многофакторной модели динамики.

Построенная с соблюдением этих условий многофакторная регрессионная модель , (где знак ¢ показывает номер этапа) будет характеризовать среднее влияние факторных признаков на результативный признак за рассматриваемый интервал времени. Величина этого влияния, выраженная коэффициентами регрессии, частными коэффициентами эластичности и B — коэффициентами будет изменяться от года к году.

При продолжительном времени (свыше 10 лет) это будет означать недоучет влияния НТР, изменение энерговооруженности труда, замещение одного сырья другим и т. д. Эти недостатки отражения связи могут быть устранены несколькими способами.

Один из них состоит в разбиении всего периода времени T на пять интервалов. При этом выдвигается гипотеза, что за равные интервалы времени коэффициенты регрессии изменяются несущественно. Исходя из этого, можно построить пять уравнений, аналогичных вышеприведенному. Следовательно, каждое значение коэффициента регрессии ai будет иметь пять оценок. Итак, получается временной ряд для каждого коэффициента регрессии. По этим рядам динамики можно построить временные модели (тренды) для каждого коэффициента по одному динамическому ряду. Так получается модель по уравнениям регрессии.

Но при построении такой модели возникает ряд проблем. Прежде всего, при расчленении экономических динамических рядов и определяющих их факторов на интервалы, число интервалов должно быть достаточно велико, чтобы ряды динамики, составленные из этих интервалов, правильно отражали тенденцию изменения влияния факторных признаков на результативные. Число лет, входящих в один интервал, должно быть в 3-4 раза больше числа переменных, входящих в регрессионное уравнение.

Однако мы часто располагаем более короткими рядами динамики, следовательно, практически применять такие модели крайне затруднительно, а иногда и невозможно.

Поэтому рассмотрим другие методы построения многофакторных моделей.

Предположим, что зависимость результативного признака экономического явления от ряда факторных может быть записана уравнением:

(t = 1, 2,..., k) и коэффициенты регрессии изменяются во времени по линейной функции так, что их можно записать уравнениями:

.

В этом случае уравнение регрессии имеет другой вид:

.

Раскрывая скобки и производя замену переменных произведения tх через z, так что:

tx11 = z11;

tx21 = z21;

.....,

txm1 = zm1,

bm0 + bm01t = c0,

получим новое уравнение:

.

Параметры этого уравнения находятся по способу наименьших квадратов и показывают, как меняется во времени действие отдельных факторов на результативный признак рассматриваемого социально-экономического явления.

Применение приведенного уравнения с большим числом параметров и факторов требует использования рядов в 6-7 раза длиннее числа параметров.

Однако в данном случае рассматривались линейные тренды параметров уравнения регрессии, а при криволинейных трендах число параметров самого уровня значительно увеличивается и, следовательно, ряд динамики должен быть еще длиннее.

Таким образом, пользоваться только что рассмотренным методом на практике бывает затруднительно. Особенно трудно вести оценку значимости параметров. Обычно имеющиеся в распоряжении исследования временные ряды за 20-25 лет недостаточны. Они должны быть значительно длиннее, чтобы были получены достаточно достоверные выводы.

Глава 16. Оценка точности и надежности прогнозов

Важным этапом прогнозирования социально-экономических явлений является оценка точности и надежности прогнозов.

Эмпирической мерой точности прогноза, служит величина его ошибки, которая определяется как разность между прогнозными () и фактическими (уt) значениями исследуемого показателя. Данный подход возможен только в двух случаях:

а) период упреждения известен, уже закончился и исследователь располагает необходимыми фактическими значениями прогнозируемого показателя;

б) строится ретроспективный прогноз, то есть рассчитываются прогнозные значения показателя для периода времени за который уже имеются фактические значения. Это делается с целью проверки разработанной методики прогнозирования.

В данном случае вся имеющаяся информация делится на две части в соотношении 2/3 к 1/3. Одна часть информации (первые 2/3 от исходного временного ряда) служит для оценивания параметров модели прогноза. Вторая часть информации (последняя 1/3 части исходного ряда) служит для реализации оценок прогноза.

Полученные, таким образом, ретроспективно ошибки прогноза в некоторой степени характеризуют точность предлагаемой и реализуемой методики прогнозирования. Однако величина ошибки ретроспективного прогноза не может в полной мере и окончательно характеризовать используемый метод прогнозирования, так как она рассчитана только для 2/3 имеющихся данных, а не по всему временному ряду.

В случае если, ретроспективное прогнозирование осуществлять по связным и многомерным динамическим рядам, то точность прогноза, соответственно, будет зависеть от точности определения значений факторных признаков, включенных в многофакторную динамическую модель, на всем периоде упреждения. При этом, возможны следующие подходы к прогнозированию по связным временным рядам: можно использовать как фактические, так и прогнозные значения признаков.

Все показатели оценки точности статистических прогнозов условно можно разделить на три группы:

  • аналитические;

  • сравнительные;

  • качественные.

Аналитические показатели точности прогноза позволяют количественно определить величину ошибки прогноза. К ним относятся следующие показатели точности прогноза:

Абсолютная ошибка прогноза (D*) определяется как разность между эмпирическим и прогнозным значениями признака и вычисляется по формуле:

, (16.1)

где уt – фактическое значение признака;

- прогнозное значение признака.

Относительная ошибка прогноза (d*отн) может быть определена как отношение абсолютной ошибки прогноза (D*):

  • к фактическому значению признака (уt):

(16.2)

- к прогнозному значению признака ()

(16.3)

Абсолютная и относительная ошибки прогноза являются оценкой проверки точности единичного прогноза, что снижает их значимость в оценке точности всей прогнозной модели, так как на изучаемое социально-экономическое явление подвержено влиянию различных факторов внешнего и внутреннего свойства. Единично удовлетворительный прогноз может быть получен и на базе реализации слабо обусловленной и недостаточно адекватной прогнозной модели и наоборот – можно получить большую ошибку прогноза по достаточно хорошо аппроксимирующей модели.

Поэтому на практике иногда определяют не ошибку прогноза, а некоторый коэффициент качества прогноза (Кк), который показывает соотношение между числом совпавших (с) и общим числом совпавших (с) и несовпавших (н) прогнозов и определяется по формуле:

(16.4)

Значение Кк = 1 означает, что имеет место полное совпадение значений прогнозных и фактических значений и модель на 100% описывает изучаемое явление. Данный показатель оценивает удовлетворительный вес совпавших прогнозных значений в целом по временному ряду и изменяющегося в пределах от 0 до 1.

Следовательно, оценку точности получаемых прогнозных моделей целесообразно проводить по совокупности сопоставлений прогнозных и фактических значений изучаемых признаков.

Средним показателем точности прогноза является средняя абсолютная ошибка прогноза (), которая определяется как средняя арифметическая простая из абсолютных ошибок прогноза по формуле вида:

, (16.5)

де n – длина временного ряда.

Средняя абсолютная ошибка прогноза показывает обобщенную характеристику степени отклонения фактических и прогнозных значений признака и имеет ту же размерность, что и размерность изучаемого признака.

Для оценки точности прогноза используется средняя квадратическая ошибка прогноза, определяемая по формуле:

(16.6)

Размерность средней квадратической ошибки прогноза также соответствует размерности изучаемого признака. Между средней абсолютной и средней квадратической ошибками прогноза существует следующее примерное соотношение:

(16.7)

Недостатками средней абсолютной и средней квадратической ошибками прогноза является их существенная зависимость от масштаба измерения уровней изучаемых социально-экономических явлений.

Поэтому на практике в качестве характеристики точности прогноза определяют среднюю ошибку аппроксимации, которая выражается в процентах относительно фактических значений признака, и определяется по формуле вида:

(16.8)

Данный показатель является относительным показателем точности прогноза и не отражает размерность изучаемых признаков, выражается в процентах и на практике используется для сравнения точности прогнозов полученных как по различным моделям, так и по различным объектам. Интерпретация оценки точности прогноза на основе данного показателя представлена в следующей таблице:

,%

Интерпретация точности

< 10

10 – 20

20 – 50

> 50

Высокая

Хорошая

Удовлетворительная

Не удовлетворительная

В качестве сравнительного показателя точности прогноза используется коэффициент корреляции между прогнозными и фактическими значениями признака, который определяется по формуле:

, (16.9)

где - средний уровень ряда динамики прогнозных оценок.

Используя данный коэффициент в оценке точности прогноза следует помнить, что коэффициент парной корреляции в силу своей сущности отражает линейное соотношение коррелируемых величин и характеризует лишь взаимосвязь между временным рядом фактических значений и рядом прогнозных значений признаков. И даже если коэффициент корреляции R = 1, то это еще не предполагает полного совпадения фактических и прогнозных оценок, а свидетельствует лишь о наличии линейной зависимости между временными рядами прогнозных и фактических значений признака.

Одним из показателей оценки точности статистических прогнозов является коэффициент несоответствия (КН), который был предложен Г. Тейлом и может рассчитываться в различных модификациях:

  1. Коэффициент несоответствия (КН1), определяемый как отношение средней квадратической ошибки к квадрату фактических значений признака:

(16.10)

КН = о, если , то есть полное совпадение фактических и прогнозных значений признака.

КН = 1, если при прогнозировании получают среднюю квадратическую ошибку адекватную по величине ошибке, полученной одним из простейших методов экстраполяции неизменности абсолютных цепных приростов.

КН > 1, когда прогноз дает худшие результаты, чем предположение о неизменности исследуемого явления. Верхней границы коэффициент несоответствия не имеет.

2.Коэффициент несоответствия КН2 определяется как отношение средней квадратической ошибки прогноза к сумме квадратов

отклонений фактических значений признака от среднего уровня исходного временного ряда за весь рассматриваемый период:

, (16.11)

где - средний уровень исходного ряда динамики.

Если КН > 1, то прогноз на уровне среднего значения признака дал бы лучший результат, чем имеющийся прогноз.

3.Коэффициент несоответствия (КН3), определяемый как отношение средней квадратической ошибке прогноза к сумме квадратов отклонений фактических значений признака от теоретических, выравненных по уравнению тренда:

, (16.12)

где - теоретические уровни временного ряда, полученные по

модели тренда.

Если КН > 1, то прогноз методом экстраполяции тренда дает хороший результат.



Похожие документы:

  1. Ответы к экзамену по статистике Предмет и метод статистики. Ее связь с другими науками

    Ответы к экзамену
    ... (группировку и сводку); Анализ результатов. К основным методам относятся: Диалектический метод (явления рассматриваются в развитии); Метод статистических группировок (позволяет ...
  2. Рабочая программа учебной дисциплины статистика (название дисциплины)

    Рабочая программа
    ... . Виды статистического наблюдения и способы его проведения. Статистическая сводка, ее задачи и значение. Организация сводки. Группировка как научная основа сводки, ее задачи и виды. Виды группировок, их задачи ...
  3. Учебно-методическое пособие Рекомендовано методической комиссией финансового факультета для студентов высших учебных заведений экономических специальностей Нижний Новгород

    Учебно-методическое пособие
    ... . Статистическая инструкция, ее назначение и содержание. Статистические сводки и группировки как второй этап статистического исследования. Понятие о сводке, ее назначение и задачи. Виды сводок ...
  4. Задачи дисциплины (8)

    Документ
    ... науки, ее место в системе общественных наук. Преломление черт диалектического метода в ... системы сбора и обработки информации. Тема 1.3. Сводка и группировка статистических данных Понятие, содержание и задачи сводки. Этапы сводки. Особенности сводки ...
  5. Руководство по переходу системы здравоохранения к работе с международной классификацией

    Руководство
    ... и сводки первичных ... и содержания его приема ... его написания и шифровки для статистических разработок, приемы представления статистических данных и стандарты группировок ... ее ... метод его ... задача ... система оценки этих обстоятельств во времени, месте, видах ...

Другие похожие документы..