Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Конспект'
Предмет эконометрики, задачи, модели, методы, предназначение. Классификация переменных. Проблема идентификации. Идентифицируемость. Адекватность модел...полностью>>
'Документ'
уход за искусственными ногтями – теория + практика Разбор средств – теория Система фибергласс (работа с клеем и шелковой сеткой) Френч – покрытие – ге...полностью>>
'Документ'
Редкое природное явление в форме шара. 7. Когда кто-то теряет соображение, шарики заезжают за них. 8. Сказочный герой в форме шара. 9. Игра, в которой...полностью>>
'Документ'
В таблице 2 представлены данные вертикального и горизонтального анализа, которые дают наиболее общее представление о качественных изменениях в структу...полностью>>

Главная > Документ

Сохрани ссылку в одной из сетей:
Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

38. Вписанные и описанные конусы

Вариант 1

1. В сферу радиуса 4 см вписан конус. Найдите высоту этого конуса и радиус его основания, если угол при вершине осевого сечения равен 600.

2. Радиус основания конуса равен r, образующая наклонена к плоскости основания под углом 600. Найдите радиус вписанной в конус сферы.

3. Можно ли вписать в конус 4-угольную пирамиду, у которой углы основания последовательно относятся как: а) 1:5:9:7; б) 4:2:5:7?

4. Основанием пирамиды является равнобедренная трапеция с основаниями 8 см и 18 см; двугранные углы при основании пирамиды равны. В пирамиду вписан конус. Найдите радиус основания конуса и его высоту, если меньшее боковое ребро пирамиды составляет с меньшей стороной трапеции угол 600.

Вариант 2

1. В конусе образующая равна 15 см и составляет с основанием угол 600. Найдите радиус описанной сферы.

2. В конус вписана сфера, радиус которой равен R. Найдите радиус основания конуса, если угол при вершине осевого сечения равен 600.

3. Можно ли описать около конуса 4-угольную пирамиду, у которой стороны основания последовательно относятся как: а) 5:6:8:7; б) 3:10:15:7?

4. Основанием пирамиды является прямоугольный треугольник; боковые ребра равны между собой, а боковые грани, проходящие через катеты, составляют с основанием углы 300 и 600. Около пирамиды описан конус таким образом, что у них общая высота. Найдите радиус основания конуса, если высота пирамиды равна h.

39*. Конические сечения

Вариант 1

1. Образующая конуса наклонена к плоскости его основания под углом 600. Радиус основания конуса равен R. Через центр основания проведена плоскость под углом 600 к плоскости основания. Найдите радиус сферы, вписанной в коническую поверхность и касающуюся этой плоскости.

2. Изобразите конус и плоскость, пересекающую коническую поверхность по эллипсу.

3. Угол при вершине осевого сечения конуса равен 900. Под каким углом к плоскости основания конуса нужно провести плоскость, чтобы в сечении конической поверхности получить: а) эллипс; б) параболу; в) гиперболу?

4. Угол между осью конуса и его образующей равен 450. Через точку образующей, отстоящую от вершины конуса на расстояние a, проведена плоскость, перпендикулярная этой образующей. Найдите расстояние между фокусом и директрисой параболы, получающейся в сечении конической поверхности этой плоскостью.

Вариант 2

1. Угол при вершине осевого сечения конуса равен 900. Через точку образующей, отстоящей от вершины конуса на расстояние a, проведена плоскость, перпендикулярная этой образующей. Найдите радиус сферы, вписанной в коническую поверхность, касающуюся этой плоскости.

2. Изобразите конус и плоскость, пересекающую коническую поверхность по параболе.

3. Образующая конуса наклонена к плоскости его основания под углом 600. Под каким углом к плоскости основания нужно провести плоскость, чтобы в сечении конической поверхности получить: а) эллипс; б) параболу; в) гиперболу?

4. Угол при вершине осевого сечения конуса равен 300. Через точку образующей, отстоящей от вершины на расстояние b, проведена плоскость, перпендикулярная этой образующей. Найдите большую ось эллипса, получившегося в сечении конической поверхности этой плоскостью.

40. Симметрия пространственных фигур

Вариант 1

1. Для двух точек пространства найдите точку, относительно которой они центрально симметричны.

2. Постройте прямую, зеркально-симметричную данной прямой относительно данной плоскости a. Рассмотрите различные случаи.

3. Докажите, что при осевой симметрии плоскость, перпендикулярная оси, переходит в себя.

4. Найдите элементы симметрии правильной треугольной призмы.

Вариант 2

1. Для двух точек пространства найдите прямую, относительно которой они симметричны.

2. Постройте плоскость, центрально-симметричную данной плоскости относительно точки O. Рассмотрите различные случаи.

3. Докажите, что при осевой симметрии прямые, перпендикулярные оси, переходят в прямые, также перпендикулярные оси.

4. Найдите элементы симметрии правильной 6-ной пирамиды.

41. Движения

Вариант 1

1. Докажите, что композиция двух движений (последовательное их выполнение) является движением.

2. Найдите движения, которые переводят вершину A куба AD1 в вершину C1.

3. Найдите движения, которые переводят вершину A правильного тетраэдра ABCD в вершину C.

4. Каким движением является композиция (последовательное выполнение) двух осевых симметрий с параллельными осями?

Вариант 2

1. Докажите, что преобразование, обратное движению, тоже является движением.

2. Найдите движения, которые переводят вершину B1 куба AD1 в вершину D.

3. Найдите движения, которые переводят вершину D правильного тетраэдра ABCD в вершину B.

4. Каким движением является композиция (последовательное выполнение) двух центральных симметрий?

42*. Ориентация поверхности. Лист Мебиуса

Вариант 1

1. Сколько сторон имеет поверхность: а) пирамиды; б) призмы; в) дважды перекрученной ленты Мебиуса?

2. Изобразите лист Мебиуса.

3. Лист Мебиуса получен из прямоугольника со сторонами a, b (a<b) склеиванием сторон длины a. Какова площадь поверхности листа Мебиуса?

4. Можно ли одностороннюю поверхность склеить из шестиугольника?

Вариант 2

1. Сколько сторон имеет поверхность: а) конуса; б) цилиндра; в) листа Мебиуса?

2. Изобразите дважды перекрученную ленту Мебиуса.

3. Лист Мебиуса получен из прямоугольника со сторонами a, b (a<b) склеиванием сторон длины a. Какова длина края листа Мебиуса?

4. Можно ли одностороннюю поверхность склеить из восьмиугольника?

43. Объем фигур в пространстве. Объем цилиндра

Вариант 1

1. Осевое сечение прямого кругового цилиндра - квадрат со сторо­ной 3 см. Найдите объем цилиндра.

2. От куба AD1, ребро которого равно 1, отсечены 4 треугольные призмы плоскостями, которые проходят через середины смежных сторон грани ABCD, параллельно ребру AA1. Найдите объем оставшейся части куба.

3. Прямая треугольная призма пересечена плоскостью, которая проходит через боковое ребро и делит площадь противолежащей ему боковой грани в отношении m:n. В каком отношении делится объем призмы?

4. Основанием прямого параллелепипеда является ромб, диагонали которого относятся как 5:2. Зная, что диагонали параллелепипеда равны 17 дм и 10 дм, найдите объем параллелепипеда.

Вариант 2

1. Диагональ осевого сечения цилиндра равна 2 см и наклонена к плос­кости основания под углом 600. Найдите объем цилиндра.

2. Объем правильной шестиугольной призмы равен V. Определите объем призмы, вершинами которой являются середины сторон оснований данной призмы.

3. В каком отношении делится объем прямой треугольной призмы плоскостью, проходящей через средние линии оснований.

4. Основанием прямого параллелепипеда является ромб, диагонали которого равны 1 дм и 7 дм. Зная, что диагонали параллелепипеда относятся как 13:17, найдите объем параллелепипеда.

44. Принцип Кавальери

Вариант 1

1. Верно ли, что два конуса, имеющие равные основания и высоты, равнове­лики?

1. Найдите объем наклонной призмы, площадь основания ко­торой равна S, а боковое ребро b наклонено к плоскости основания под углом 600.

3. В наклонном параллелепипеде две боковые грани имеют площади S1 и S2, их общее ребро равно a, и они образуют между собой двугранный угол 1500. Найдите объем параллелепипеда.

4. В наклонной треугольной призме площадь одной из боковых граней равна Q, а расстояние от нее до противоположного ребра равно d. Найдите объем призмы.

Вариант 2

1. Верно ли, что две пирамиды, имеющие равновеликие основания и равные высоты, равнове­лики?

2. Найдите объем наклонного цилиндра, радиус основания ко­торого равен R, а боковое ребро b наклонено к плоскости основания под углом 450.

3. В наклонном параллелепипеде основание и боковая грань являются прямоугольниками и их площади равны соответственно 20 см2 и 24 см2. Угол между их плоскостями равен 300. Еще одна грань параллелепипеда имеет площадь 15 см2. Найдите объем параллелепипеда.

4. В наклонной треугольной призме две боковые грани перпендикулярны и имеют общее ребро, равное a. Площади этих граней равны S1 и S2. Найдите объем призмы.

45. Объем пирамиды

Вариант 1

1. Пирамида, объем которой равен V, а в основании лежит прямоугольник, пересечена четырьмя плоскостями, каждая из которых проходит через вершину пирамиды и середины смежных сторон основания. Найдите объем оставшейся части пирамиды.

2. Основанием пирамиды является равносторонний треугольник со стороной, равной 1. Две ее боковые грани перпендикулярны плоскости основания, а третья образует с основанием угол 600. Найдите объем пирамиды.

3. В основании прирамиды лежит прямоугольный треугольник, один из катетов которого равен 3 см, а прилежащий к нему острый угол равен 300. Все боковые ребра пирамиды наклонены к плоскости основания под углом 600. Найдите объем пирамиды.

4. Центры граней куба, ребро которого равно 2a, служат верши­нами октаэдра. Найдите его объем.

Вариант 2

1. Найдите объем правильной четырехугольной пирамиды, если ее диагональным сечением является правильный треугольник со стороной, равной 1.

2. Основанием пирамиды служит прямоугольник, одна боковая грань перпендикулярна плоскости основания, а три другие боковые грани наклонены к плоскости основания под углом 600. Высота пирамиды равна 3 см. Найдите объем пирамиды.

3. Боковые грани пирамиды, в основании которой лежит ромб, наклонены к плоскости основания под углом 300. Диагонали ромба равны 10 см и 24 см. Найдите объем пирамиды.

4. В куб с ребром, равным a, вписан правильный тетраэдр таким образом, что его вершины совпадают с четырьмя вершинами куба. Найдите объем тетраэдра.

46. Объем конуса

Вариант 1

1. Диаметр основания конуса равен 12 см, а угол при вершине осевого сечения равен 900. Найдите объем конуса.

2. Два конуса имеют общую высоту и параллельные основания. Найдите объем их общей части, если объем каждого конуса равен V.

3. В конус, объем которого равен V, вписан цилиндр. Найдите объем цилиндра, если отношение диаметров оснований конуса и цилиндра равно 10:9.

4. Каждое ребро правильной 4-угольной пирамиды равно a. Плоскость, параллельная плоскости основания пирамиды, отсекает от нее усеченную пирамиду. Найдите объем усеченной пирамиды, если сторона сечения равна b.

Вариант 2

1. Осевым сечением конуса служит равнобедренный прямоугольный треугольник площади 9 см2. Найдите объем конуса.

2. В конус вписан другой конус таким образом, что центр основания вписанного конуса делит высоту данного конуса в отношении 3:2, считая от вершины конуса, а вершина вписанного конуса находится в центре основания данного конуса. Найдите отношение объемов данного и вписанного конусов.

3. Докажите, что если два равных конуса имеют общую высоту и параллельные плоскости оснований, то объем их общей части составляет объема каждого из них.

4. Радиусы оснований усеченного конуса равны 3 см и 5 см. Найдите отношение объемов частей усеченного конуса, на которые он делится средним сечением.

47. Объем шара и его частей

Вариант 1

1. Найдите отношение объема шара к объему вписанного в него куба.

2. Найдите отношение объема шара к объему описанного около него октаэдра.

3. В шаре проведена плоскость, перпендикулярная диаметру и делящая его на части, равные 3 см и 9 см. Найдите объемы частей шара.

4. Радиус шарового сектора R, угол в осевом сечении 1200. Найдите объем шарового сектора.

Вариант 2

1. Найдите отношение объема шара к объему вписанного в него октаэдра.

2. Найдите отношение объема шара к объему описанного около него куба.

3. В шаре радиуса 13 см проведены по разные стороны от центра два равных параллельных сечения радиуса 5 см. Найдите объем полученного шарового слоя.

4. Найдите объем шарового сектора, если радиус окружности его основания равен 60 см, а радиус шара 75 см.

48. Площадь поверхности

Вариант 1

1. Плоскость, проходящая через сторону основания правильной треугольной призмы и середину противолежащего ребра, образует с основанием угол 450, а сторона основания равна a. Найдите площадь боковой и полной поверхности призмы.

2. Основанием пирамиды является квадрат, сторона которого равна a. Две грани пирамиды перпендикулярны основанию, а остальные две боковые грани наклонены к нему по углом 600. Найдите площадь боковой поверхности пирамиды.

3. В правильной четырехугольной призме сторона основания равна b; сечение, проведенное через противоположные стороны оснований, составляет с плоскостью основания угол j. Найдите площадь боковой поверхности цилиндра, описанного около данной призмы.

4. Угол при вершине осевого сечения конуса равен 600; площадь большого круга, вписанного в этот конус шара, равна Q. Найдите площадь полной поверхности конуса.

Вариант 2

1. В правильной 4-угольной призме сторона основания равна a. Плоскость, проведенная через противоположные стороны оснований, составляет с одним из них угол 600. Найдите площадь боковой и полной поверхности призмы.

2. Две боковые грани треугольной пирамиды перпендикулярны ее основанию; высота пирамиды равна h; плоские углы при вершине равны 600, 600 и 900. Найдите площадь боковой поверхности пирамиды.

3. В правильной треугольной призме боковое ребро равно b; отрезок, соединяющий середину бокового ребра с центром основания, составляет с основанием угол j. Найдите площадь боковой поверхности цилиндра, вписанного в данную призму.

4. В конусе образующая составляет с основанием угол 600; площадь большого круга описанного шара равна Q. Найдите площадь полной поверхности конуса.

49. Площадь поверхности шара и его частей

Вариант 1

1. Докажите, что площадь полной поверхности равностороннего конуса (осевое сечение – равносторонний треугольник) равна площади поверхности шара, имеющего диаметром высоту конуса.

2. Найдите площадь поверхности шара, вписанного в равносторонний цилиндр (осевое сечение – квадрат), диагональ осевого сечения которого равна a.

3. Радиусы оснований шарового пояса равны 10 см и 12 см, а его высота равна 11 см. Найдите площадь поверхности шарового пояса.

4. Радиус шарового сегмента равен R, дуга осевого сечения составляет 900. Найдите площадь полной поверхности сегмента.

Вариант 2

1. Докажите, что если равносторонний конус (осевое сечение – равносторонний треугольник) и полушар имеют общее основание, то площадь боковой поверхности конуса равна площади поверхности полушара.

2. Найдите отношение площадей поверхностей двух шаров, один из которых вписан, а второй описан около равностороннего цилиндра (осевое сечение – квадрат).

3. Радиус шара равен 25 см. Найдите площади частей, на которые делится поверхности шара сечением, площадь которого равна 49p см2.

4. Высота шарового сегмента равна h, дуга осевого сечения равна 1200. Найдите площадь полной поверхности сегмента.

50. Прямоугольная система координат в пространстве

Вариант 1

1. Постройте по координатам точки: A(1,2,3); B(-2,0,3); C(0,0,-4); D(3,-1,0).

2. Среди данных точек K(-6,0,0), L(10,-5,0), M(0,6,0), N(7,-8,0), P(0,0,-20), Q(0,11,-2) найдите те, которые принадлежат: а) оси Oy; б) оси Oz; в) плоскости Oxy; г) плоскости Oyz.

3. Найдите координаты оснований перпендикуляров, опущенных из данных точек E(6,-2,8) и F(-3,2,-5) на: а) ось Ox; б) плоскость Oxz.

4. Найдите координаты середины отрезка GH, если G(2,-3,5), H(4,1,-3).

5. Найдите координаты точек, симметричных точкам U(8,0,6), V(20,-14,0) относительно: а) плоскости Oyz; б) оси Ox.

Вариант 2

1. 1. Постройте по координатам точки: E(-1,2,0); F(1,0,-4); G(2,3,-1); H(0,-2,0).

2. Среди точек A(0,-1,0), B(0,1,-3), C(4,0,0), D(0,0,-5), E(-1,0,7), F(0,10,10) найдите те, которые принадлежат: а) оси Ox; б) оси Oy; в) плоскости Oyz; г) плоскости Oxz.

3. Найдите координаты оснований перпендикуляров, опущенных из точек M(9,-1,-6) и N(-12,5,8) на: а) ось Oz; б) плоскость Oxy.

4. Найдите координаты середины отрезка GH, если G(3,-2,4), H(5,2,-6).

5. Найдите координаты точек, симметричных точкам P(0,0,5), V(0,-1,-2) относительно: а) плоскости Oxy; б) оси Oy.

51. Расстояние между точками в пространстве

Вариант 1

1. Определите, являются ли точки A(2,3,4), B(1,2,3), C(3,4,5) вершинами треугольника.

2. Найдите координаты точки, принадлежащей оси Oz и одинаково удаленной от точек M(-1,-2,0) и N(3,0,4).

3. Запишите уравнение сферы с центром в точке C(-2,0,3) и: а) радиусом ; б) проходящей через точку K(1,-4,3).

4. Найдите координаты центра и радиус сферы, заданной уравнением x2 + 8y + y2 + z2 – 6x =0.

5. Сфера x2 + y2 + z2 +4x – 2y =0 пересечена плоскостью Oyz. Найдите координаты центра и радиус окружности, лежащей в сечении.

Вариант 2

1. Определите, являются ли точки E(-4,-5,-6), F(-1,-2,-3), G(-2,-3,-4) вершинами треугольника.

2. Найдите координаты точки, принадлежащей оси Oy и одинаково удаленной от точек K(1,3,0) и L(4,-1,3).

3. Запишите уравнение сферы с центром в точке C(0,-5,6) и: а) радиусом 10; б) проходящей через точку H(2,-3,5).

4. Найдите координаты центра и радиус сферы, заданной уравнением x2 + y2 + z2 – 8z - 20 =0.

5. Сфера x2 + y2 + z2 +2x – 6z =0 пересечена плоскостью Oxy. Найдите координаты центра и радиус окружности, лежащей в сечении.

52. Координаты вектора

Вариант 1

1. Найдите координаты вектора: а) 2 + 3 - 4; б) -5 + 10; в) - +.

2. Найдите длину вектора: а) (1,-2,10); б) , если A(0,-5,1), B(2,0,-8); в) + , если (6,2,-6), (2,-2,0).

3. Найдите координаты точки C, если: а) (-5,6,8), D(0,-1,2); б) D(-13,,6), (-5,0,0).

4. Найдите числа x, y, z, чтобы выполнялось равенство = , если (5,-2,0), (0,2,-6), (-5,0,-8), (-5,2,-4).

Вариант 2

1. Найдите координаты вектора: а) 3 - 4 + 2; б) -2 - ; в) - .

2. Найдите длину вектора: а) (0,-3,2); б) , если M(0,-5,1), N(2,0,-8); в) - , если (0,-2,6), (-5,0,3).

3. Найдите координаты точки E, если: а) (0,-3,11), F(5,-1,0); б) F(5,0,-9), (-2,4,-6).

4. Найдите числа u, v, w, чтобы выполнялось равенство =, если (-30,6,-12), (5,-6,0), (10,-3,2), (0,1,2).

53. Скалярное произведение векторов

Вариант 1

1. Определите знак скалярного произведения векторов и , если угол между ними удовлетворяет неравенствам: а) 000; б) 9000.

2. Угол между векторами и равен 900. Чему равен угол между векторами: а) - и ; б) - и ?

3. Докажите равенство: а) ; б) + + = 0.

4. В правильном тетраэдре ABCD с ребром, равным 1, найдите скалярное произведение: а) ; б) ; в) , где H и Q – середины соответственно ребер AC и BD.

Вариант 2

1. Определите, в каком промежутке находится угол между векторами и , если: а) < 0; б) > 0.

2. Угол между векторами и равен 900. Чему равен угол между векторами: а) и -; б) - и -?

3. Докажите равенство: а) ; б) = .

4. В правильном тетраэдре ABCD с ребром, равным a, найдите скалярное произведение: а) ; б) ; в) , где E и F – середины соответственно ребер BC и AD.

54. Уравнение плоскости в пространстве

Вариант 1

1. Напишите уравнение плоскости, проходящей через точку H(-3,0,7) и перпендикулярную вектору с координатами (1,-1,3).

2. Найдите координаты точки пересечения плоскости 2xy + 3z – 1 = 0 с осью: а) абсцисс; б) ординат.

3. Напишите уравнение плоскости, если она проходит через точку B(3,-2,2) и: а) параллельна плоскости Oyz; б) перпендикулярна оси Ox.

4. Напишите уравнение плоскости, которая проходит через точку M(5,-1,3) и перпендикулярна вектору , если N(0,-2,1).

Вариант 2

1. Напишите уравнение плоскости, проходящей через точку P(5,-1,0) и перпендикулярную вектору с координатами (0,-6,10).

2. Найдите координаты точки пересечения плоскости x + 4y - 6z – 7 = 0 с осью: а) ординат; б) аппликат.

3. Напишите уравнение плоскости, если она проходит через точку C(2,-4,-3) и: а) параллельна плоскости Oxz; б) перпендикулярна оси Oy.

4. Напишите уравнение плоскости, которая проходит через точку E и перпендикулярна вектору (4,-5,0), если F(3,-1,6).



Похожие документы:

  1. Пояснительная записка рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования

    Пояснительная записка
    ... . О с н о в н а я ц е л ь – сформировать представления учащихся об основных понятиях и аксиомах стереометрии, познакомить с основными пространственными фигурами и моделированием многогранников. Особенностью ...
  2. Зачет № «Начала стереометрии» Срок сдачи

    Документ
    ... года История возникновения и развития геометрии. Основные понятия стереометрии. Пространственные фигуры. Моделирование многогранников. В ... обучающийся должен уметь: использовать основные понятия и аксиомы стереометрии при решении стандартных задач; ...
  3. Смирнова И. М. Геометрия. 10-11 кл.: учебн для общеобразовательных учреждений (базовый уровень)

    Документ
    ... Моделирование многогранников. Развёртка. Перечислять основные понятия и аксиомы стереометрии. Приводить примеры реальных объектов ... многогранников. Развёртка. Перечислять основные понятия и аксиомы стереометрии. Приводить примеры реальных объектов ...
  4. Методические рекомендации к учебникам математики для 10 11 классов

    Методические рекомендации
    ... , 46 - 2 Введение. Предмет стереометрии. Основные понятия и аксиомы стереометрии. Первые следствия из аксиом 2 2 ... и икосаэдр) 1 § 3*. Аксиомы, законы, правила 2 9. Аксиомы стереометрии Основные понятия стереометрии (точка, прямая, плоскость, ...
  5. Рабочая программа учебного курса «Геометрия»

    Рабочая программа
    ... стереометрии. Аксиомы стереометрии. Некоторые следствия из аксиом. Основная цель – сформировать представления учащихся об основных понятиях и аксиомах стереометрии, их ...

Другие похожие документы..