Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
Счетчики – это цифровые автоматы, внутренние состояния которых определяются только количеством сигналов “1”, пришедших на вход. Сигналы “0” не изменяю...полностью>>
'Документ'
Основные сведения о строении атома. Ядро: протоны и нейтроны. Изотопы. Электроны. Электронная оболочка. Энергетический уровень. Особенности строения э...полностью>>
'Документ'
Такие новообразованиями, как: произвольность психических явлений, способность формирования внутреннего плана действия, формирование рефлексии характер...полностью>>
'Документ'
родился живорожденный/мертворожденный (нужное подчеркнуть) ребенок мужского/женского (нужное подчеркнуть) пола вне медицинской организации и без оказа...полностью>>

Главная > Документ

Сохрани ссылку в одной из сетей:
Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

19. Угол между прямой и плоскостью

Вариант 1

1. В пирамиде боковые ребра одинаково наклонены к плоскости основания. В какую точку проектируется вершина пирамиды?

2. В кубе AD1 найдите косинус угла между ребром AA1 и плоскостью AB1D1.

3. К плоскости a проведена наклонная MH (H принадлежит плоскости a). Докажите, что если проекция наклонной MH образует равные углы с прямыми AH и BH, лежащими в плоскости a, то и сама наклонная MH образует с ними равные углы.

4. Проведите к данной плоскости через данную на ней точку прямую, образующую с плоскостью угол 900.

Вариант 2

1. Докажите, что в правильной пирамиде боковые ребра одинаково наклонены к плоскости основания.

2. В кубе AD1 найдите косинус угла между ребром A1D1 и плоскостью AB1D1.

3. К плоскости b проведена наклонная BP (P принадлежит плоскости b), которая образует равные углы с прямыми PE и PF, лежащими в плоскости b. Докажите, что углы, образованные прямыми PE и PF с проекцией наклонной BP на плоскость b, равны.

4. Через точку, не принадлежащую данной плоскости, проведите прямую, образующую с плоскостью угол 900.

20. Расстояние между точками, прямыми и плоскостями

Вариант 1

1. В прямоугольном треугольнике ABC (C = 900) катет AC равен 8 см. Из вершины B к плоскости данного треугольника проведен перпендикуляр BD. Расстояние между точками A и D равно 10 см. Найдите расстояние от точки D до катета AC.

2. В единичном кубе AD1 найдите расстояние между вершиной A и: а) вершиной C1; б) ребром CC1; в) гранью BB1C1C.

3. Точка M удалена от всех вершин прямоугольного треугольника на расстояние a. Гипотенуза треугольника равна c. Найдите расстояние от точки M до плоскости данного треугольника.

4. В кубе AD1 с ребром a найдите расстояние между скрещивающимися ребрами AB и B1C1.

Вариант 2

1. Катеты прямоугольного треугольника ABC (C = 900) равны 15 см и 20 см. Из вершины C к плоскости треугольника проведен перпендикуляр CD, равный 5 см. Найдите расстояние от точки D до гипотенузы AB.

2. В единичном кубе AD1 найдите расстояние между вершиной D1 и: а) вершиной B; б) ребром AB; в) гранью BB1C1C.

3. Из точки K на плоскость b опущен перпендикуляр длиной d и проведены две наклонные, углы которых с перпендикуляром составляют 300. Угол между наклонными равен 600. Найдите расстояние между основаниями наклонных.

4. В кубе AD1 с ребром a найдите расстояние между скрещивающимися ребрами DC и BB1.

21. Двугранный угол

Вариант 1

1. Наклонная, проведенная к плоскости, равна a. Найдите ортогональную проекцию этой наклонной на плоскость, если угол между наклонной и плоскостью равен 300.

2. На одной грани двугранного угла взяты две точки A и B. Из них опущены перпендикуляры AA1, BB1 на другую грань и AA2, BB2 на ребро двугранного угла. Найдите BB2, если AA1 = 6 см, BB1 = 3 см, AA2 = 24 см.

3. Два равных прямоугольника имеют общую сторону и их плоскости образуют угол 450. Найдите отношение площадей двух фигур, на которые ортогональная проекция стороны одного прямоугольника разбивает другой.

4. Докажите, что перпендикуляры, проведенные из точек данной прямой на плоскость, лежат в одной плоскости и геометрическим местом оснований этих перпендикуляров является линия пересечения этих плоскостей.

Вариант 2

1. Наклонная, проведенная к плоскости, равна a. Найдите ортогональную проекцию этой наклонной на плоскость, если угол между наклонной и плоскостью равен 600.

2. На одной грани двугранного угла взяты две точки, отстоящие от его ребра на 9 см и 12 см. Расстояние от первой точки до другой грани двугранного угла равно 20 см. Найдите расстояние от этой грани до второй точки.

3. Два равнобедренных треугольника имеют общее основание, а их плоскости образуют угол 600. Общее основание равно 16 см, боковая сторона одного треугольника равна 17 см, а боковые стороны другого перпендикулярны. Найдите расстояние между вершинами треугольников, лежащими против общего основания.

4. Докажите, что точка пересечения ортогональных проекций двух прямых на плоскость является ортогональной проекцией точки пересечения данных прямых на ту же плоскость.

22. Перпендикулярность плоскостей

Вариант 1

1. Дан куб AD1. Докажите перпендикулярность плоскостей: а) ABD и DCC1; б) AB1C1 и ABB1.

2. Через данную прямую, лежащую в данной плоскости, проведите плоскость, перпендикулярную этой плоскости.

3. Две перпендикулярные плоскости a и b пересекаются по прямой AB. Прямая CD лежит в плоскости a, параллельна AB и находится на расстоянии 60 см от нее. Точка E принадлежит плоскости b и находится на расстоянии 91 см от AB. Найдите расстояние от точки E до прямой CD.

4. Докажите, что прямая a и плоскость a, перпендикулярные одной и той же плоскости b, параллельны, если прямая a не лежит в плоскости a.

Вариант 2

1. Дан куб AD1. Докажите перпендикулярность плоскостей: а) AA1D1 и D1B1C1; б) A1B1D и BB1C1.

2. Через наклонную к плоскости проведите плоскость, перпендикулярную этой плоскости.

3. Отрезок MN имеет концы на двух перпендикулярных плоскостях и составляет с ними равные углы. Докажите, что точки M и N одинаково удалены от линии пересечения данных плоскостей.

4. Докажите, что две плоскости a и b параллельны, если они перпендикулярны плоскости g и пересекают ее по параллельным прямым.

23*. Центральное проектирование

Самостоятельная работа N 1

Вариант 1

1. Куда при центральном проектировании переходит прямая, параллельная плоскости проектирования?

2. Плоская фигура лежит в плоскости, параллельной плоскости проектирования, и находится между центром и плоскостью проектирования. Как при этом определяется коэффициент подобия фигуры и ее проекции?

3. Радиус основания конуса равен R. Через середину высоты проведена плоскость, параллельная основанию. Найдите площадь сечения.

4. В треугольной пирамиде ABCD (рис. 12) через точки M и N, принадлежащие соответственно граням ABD и BCD, проведите сечение, параллельное ребру AC.

Вариант 2

1. В каком случае центральной проекцией двух прямых будут две параллельные прямые?

2. Плоская фигура лежит в плоскости, параллельной плоскости проектирования. Плоскость проектирования расположена между центром проектирования и плоскостью данной фигуры. Как при этом определяется коэффициент подобия фигуры и ее проекции?

3. Радиус основания конуса равен R. Он пересечен плоскостью, параллельной основанию и делящей высоту конуса в отношении m:n, считая от вершины. Найдите площадь сечения.

4. В треугольной пирамиде ABCD (рис. 13) через точку M, принадлежащую высоте пирамиды DO, проведите сечение, параллельное грани BCD.

Самостоятельная работа N 2

Вариант 1

1. Прямая m пересекает плоскость проектирования p и не проходит через центр проектирования S. Изобразите центральную проекцию части данной прямой, расположенной в одном полупространстве с точкой S относительно плоскости p.

2. Изобразите центральную проекцию куба AD1 на плоскость, параллельную плоскости AA1C1.

3. Изобразите центральную проекцию правильной шестиугольной призмы на плоскость, параллельную ее основаниям.

4. Дана правильная четырехугольная пирамида SABCD, у которой двугранный угол при основании равен 600. Найдите расстояние между прямыми AB и SC, если AB = 1.

Вариант 2

1. Прямая m пересекает плоскость проектирования p и не проходит через центр проектирования S. Изобразите центральную проекцию части данной прямой, расположенной в разных полупространствах с точкой S относительно плоскости p.

2. Изобразите центральную проекцию куба AD1 на плоскость, параллельную плоскости AB1C1.

3. Изобразите центральную проекцию правильной шестиугольной призмы на плоскость, не параллельную ее основаниям.

4. Дана правильная треугольная призма AC1, все ребра которой равны 1. Найдите расстояние между прямыми AA1 и BC1.

24. Многогранные углы

Вариант 1

1. Запишите, при каких условиях углы a, b и g могут быть плоскими углами трехгранного угла.

2. В трехгранном угле все плоские углы прямые. На его ребрах от вершины отложены отрезки 2 см, 4 см, 6 см и через их концы проведена плоскость. Найдите площадь получившегося сечения.

3. По скольким прямым попарно пересекаются плоскости всех граней четырехгранного угла?

Вариант 2

1. Два плоских угла трехгранного угла равны a и b, причем a > b. Запишите, в каких границах возможны значения третьего плоского угла g данного трехгранного угла.

2. В трехгранном угле все двугранные углы – прямые. Из вершины этого угла в его внутренней области проведен отрезок, проекции которого на ребра равны a, b и c. Найдите данный отрезок.

3. По скольким прямым попарно пересекаются плоскости всех граней пятигранного угла?

25*. Выпуклые многогранники

Вариант 1

1. Определите число вершин (В), ребер (Р) и граней (Г) n-угольной призмы: а) выпуклой; б) невыпуклой.

2. Нарисуйте выпуклый многогранник с 5 вершинами.

3. В выпуклом многограннике известно число граней Г, причем каждая грань имеет одно и то же число сторон n. Найдите число: а) плоских углов (); б) ребер (Р) данного многогранника. Как связаны между собой числа и Р?

4. Выпуклый многогранник имеет В вершин, Р ребер и Г граней. От него отсекли m-гранный угол. Найдите число вершин, ребер и граней полученного многогранника.

Вариант 2

1. Определите число вершин (В), ребер (Р) и граней (Г) n-угольной пирамиды: а) выпуклой; б) невыпуклой.

2. Нарисуйте выпуклый многогранник с 6 вершинами.

3. В выпуклом многограннике известно число вершин В, причем в каждой вершине сходится одно и то же число ребер m. Найдите число: а) плоских углов (); б) ребер данного многогранника (Р). Как связаны между собой числа и Р?

4. Выпуклый многогранник имеет В вершин, Р ребер и Г граней. К его n-угольной грани пристроили пирамиду. Найдите число вершин, ребер и граней нового многогранника.

26*. Теорема Эйлера

Вариант 1

1. Нарисуйте невыпуклый многогранник, для которого выполняется теорема Эйлера.

2. Докажите, что для всякого выпуклого многогранника справедливо соотношение <3, где Р – число ребер, Г – число граней многогранника.

3. Докажите, что в любом выпуклом многограннике с В вершинами, Р ребрами и Г гранями выполняется неравенство: 3В – 6 Р.

4. Найдите сторону основания правильной треугольной пирамиды с высотой h и боковым ребром b.

Вариант 2

1. Нарисуйте невыпуклый многогранник, для которого не выполняется теорема Эйлера.

2. Докажите, что для всякого выпуклого многогранника справедливо соотношение <3, где Р – число ребер, В – число вершин многогранника.

3. Докажите, что в любом выпуклом многограннике с В вершинами, Р ребрами и Г гранями выполняется неравенство: 3Г – 6 Р.

4. Найдите высоту правильной треугольной пирамиды со стороной основания a и высотой боковой грани h.

27. Правильные многогранники

Вариант 1

1. Нарисуйте: а) развертку тетраэдра; б) многогранник, двойственный гексаэдру.

2. Постройте сечение октаэдра плоскостью, проходящей через одну из его вершин и середины двух параллельных ребер, которым не принадлежит данная вершина. Определите вид сечения.

3. В тетраэдр ABCD вписана правильная треугольная призма с равными ребрами таким образом, что вершины одного ее основания находятся на боковых ребрах AD, BD, CD, а другого – в плоскости ABC. Ребро тетраэдра равно a. Найдите ребро призмы.

4. В тетраэдре ABCD проведите сечение плоскостью, проходящей через точку M – середину высоты DO тетраэдра, параллельно плоскости грани ADC. Определите вид сечения.

Вариант 2

1. Нарисуйте: а) развертку куба; б) многогранник, двойственный тетраэдру.

2. Постройте сечение октаэдра плоскостью, проходящей через два его параллельных ребра. Определите вид сечения.

3. В октаэдр вписан куб таким образом, что его вершины находятся на ребрах октаэдра. Ребро октаэдра равно a. Найдите ребро куба.

4. В тетраэдре ABCD проведите сечение плоскостью, проходящей через точку M, принадлежащую грани ABC параллельно плоскости грани BCD. Определите вид сечения.

28*. Полуправильные многогранники

Вариант 1

1. Найдите число вершин (В), ребер (Р) и граней (Г) усеченного гексаэдра.

2. Как можно получить 5-угольную антипризму?

3. Нарисуйте многогранник, двойственный правильной 6-угольной призме.

4. Правильный треугольник ABC и другой треугольник ADC имеют общую сторону AC и расположены в разных плоскостях, угол между которыми равен 300. Вершина D ортогонально проектируется на плоскость треугольника ABC в его центр. Высота правильного треугольника равна h. Найдите сторону AD треугольника ADC.

Вариант 2

1. Найдите число вершин (В), ребер (Р) и граней (Г) усеченного октаэдра.

2. Как можно получить 8-угольную антипризму?

3. Нарисуйте многогранник, двойственный 6-угольной антипризме.

4. Квадрат ABCD и треугольник ABE имеют общую сторону AB и расположены в разных плоскостях, угол между которыми равен 450. Вершина E треугольника ортогонально проектируется на плоскость квадрата в его центр O. Высота EH треугольника равна h. Найдите площадь ортогональной проекции треугольника на плоскость квадрата и ортогональную проекцию отрезка OE на плоскость треугольника.

29*. Звездчатые многогранники

Вариант 1

1. Как получить звезду Кеплера из октаэдра?

2. Найдите число вершин (В), ребер (Р) и граней (Г) малого звездчатого додекаэдра.

3. Каким образом из куба получается усеченный куб? Чему равно его ребро, если ребро куба равно a?

4. Докажите, что если плоскость пересекает треугольную пирамиду и параллельна двум ее скрещивающимся ребрам, то в сечении будет параллелограмм.

Вариант 2

1. Как получить звезду Кеплера из гексаэдра?

2. Найдите число вершин (В), ребер (Р) и граней (Г) большого додекаэдра.

3. Каким образом из куба получается кубооктаэдр? Чему равно его ребро, если ребро куба равно a?

4. Докажите, что правильный тетраэдр можно пересечь плоскостью таким образом, чтобы в сечении получился квадрат.

30*. Кристаллы – природные многогранники

Вариант 1

1. Нарисуйте кристалл горного хрусталя.

2. Нарисуйте ромбододекаэдр. Чему равно число его вершин, ребер и граней.

3. Найдите сумму всех плоских углов кристалла исландского шпата.

4. Найдите сумму площадей всех граней кристалла алмаза (в виде кубооктаэдра), если его ребро равно a.

Вариант 2

1. Нарисуйте кристалл исландского шпата.

2. Нарисуйте ромбододекаэдр. Определите число его плоских углов, двугранных углов; многогранных углов и их тип.

3. Найдите сумму всех плоских углов кристалла граната.

4. Найдите сумму площадей всех граней кристалла алмаза (в виде усеченного октаэдра), если его ребро равно a.

31. Сфера и шар. Взаимное расположение сферы и плоскости

Вариант 1

1. Шар, радиус которого равен 10 см, пересечен плоскостью, находящейся на расстоянии 9 см от центра. Найдите площадь сечения.

2. Сечения шара радиуса R двумя параллельными плоскостями имеют радиусы r1 и r2. Найдите расстояние между этими плоскостями, если они расположены по разные стороны от центра.

3. Стороны треугольника касаются сферы. Найдите расстояние от центра сферы до плоскости треугольника, если радиус сферы равен 5 см, а стороны треугольника равны 12 см, 10 см, 10 см.

4. Каждая сторона ромба касается сферы радиуса 10 см. Плоскость ромба удалена от центра сферы на 8 см. Найдите площадь ромба, если его сторона равна 12,5 см.

Вариант 2

1. Через середину радиуса шара проведена перпендикулярно к нему плоскость. Как относится площадь большого круга данного шара к площади получившегося сечения?

2. Сечения шара радиуса R двумя параллельными плоскостями имеют радиусы r1 и r2. Найдите расстояние между этими плоскостями, если они расположены по одну сторону от центра.

3. Стороны ромба касаются сферы радиуса 13 см. Найдите расстояние от плоскости ромба до центра сферы, если диагонали ромба равны 30 см и 40 см.

4. Через конец радиуса шара проведена плоскость, составляющая с ним 300. Найдите площадь сечения шара этой плоскостью, если радиус шара равен 6 см.

32. Многогранники, вписанные в сферу

Вариант 1

1. Перечислите свойства, которым должна удовлетворять призма, чтобы около нее можно было описать сферу.

2. На рисунке 14 изображена треугольная пирамида ABCD, у которой ребро DB перпендикулярно плоскости ABC и угол ACB равен 900. Найдите центр сферы, описанной около данной пирамиды.

3. В правильной четырехугольной пирамиде SABCD сторона основания ABCD равна 4 см, двугранный угол при основании 450. Найдите радиус описанной сферы. Где будет находиться ее центр?

4. Радиус сферы, описанной около правильной четырехугольной призмы, равен R. Найдите высоту этой призмы, зная, что ее диагональ образует с боковой гранью угол a.

Вариант 2

1. Перечислите свойства, которым должна удовлетворять пирамида, чтобы около нее можно было описать сферу.

2. На рисунке 15 изображена пирамида ABCD, у которой углы ADB, ADC и BDC прямые. Найдите центр сферы, описанной около данной пирамиды.

3. В правильной треугольной пирамиде SABC центр описанной сферы делит высоту на части, равные 6 см и 3 см. Найдите сторону основания ABC пирамиды.

4. В правильной 4-угольной призме диагональ основания и диагональ боковой грани равны соответственно 16 см и 14 см. Найдите радиус описанной сферы.

33. Многогранники, описанные около сферы

Вариант 1

1. Можно ли вписать сферу в пирамиду, у которой равны двугранные углы при основании? Ответ поясните.

2. Около сферы описана прямая призма, основанием которой является ромб с диагоналями 6 см и 8 см. Найдите площадь основания и высоту призмы.

3. Сторона основания правильной четырехугольной пирамиды равна a, двугранный угол при основании равен 600. Найдите радиус вписанного шара.

4. Стороны оснований правильной 4-угольной усеченной пирамиды равны 1 см и 7 см. Боковое ребро наклонено к основанию под углом 450. Найдите радиус описанного шара.

Вариант 2

1. Каким свойством должна обладать прямая треугольная призма, чтобы в нее можно было вписать сферу?

2. В основании пирамиды лежит равнобедренный треугольник, каждый из равных углов которого равен a и основание которого равно a. Боковые грани пирамиды наклонены к плоскости основания под углом b. Найдите радиус сферы, вписанной в эту пирамиду.

3. Найдите радиус шара, вписанного в правильную пирамиду, у которой высота равна h, а двугранный угол при основании равен 450.

4. В правильной треугольной усеченной пирамиде высота равна 17 см, радиусы окружностей, описанных около оснований, равны 5 см и 12 см. Найдите радиус описанного шара.

34. Цилиндр. Конус

Вариант 1

1. В цилиндре, радиус основания которого равен 4 см и высота 6 см, проведено сечение, параллельное оси. Расстояние между диагональю сечения и осью цилиндра равно 2 см. Найдите площадь сечения.

2. Через вершину конуса проведено сечение под углом 600 к его основанию. Найдите расстояние от центра основания конуса до плоскости сечения, если высота конуса равна 12 см.

3. Точка M принадлежит высоте конуса. Точка N принадлежит плоскости основания конуса, но находится вне этого основания. Постройте точку пересечения прямой MN с поверхностью конуса.

4. Диагонали осевого сечения усеченного конуса перпендикулярны, высота равна 2 см. Найдите площадь сечения усеченного конуса, проведенного через середину высоты параллельно основаниям.

Вариант 2

1. Высота цилиндра равна 15 см, радиус основания 10 см. Дан отрезок, концы которого принадлежат окружностям обоих оснований и длина которого равна 3см. Найдите расстояние между данным отрезком и осью цилиндра.

2. Через вершину конуса проведено сечение под углом 300 к его высоте. Найдите площадь сечения, если высота конуса равна 3 см, а радиус основания 5 см.

3. В конусе задано осевое сечение. Точки K и L принадлежат двум образующим конуса, не лежащим в данном сечении. Постройте точку пересечения прямой KL с плоскостью данного осевого сечения.

4. Радиусы оснований усеченного конуса относятся как 1:3, образующая составляет с плоскостью основания угол 450, высота равна h. Найдите площади оснований.

35. Поворот. Фигуры вращения

Вариант 1

1. Нарисуйте фигуру, которая получается при вращении квадрата ABCD вокруг прямой a, проходящей через вершину B и перпендикулярной диагонали BD.

2. Нарисуйте фигуру, которая получается вращением круга вокруг касательной.

3. Кривая задана уравнением y = sin x, 0xp. Нарисуйте фигуру, которая получится при вращении этой кривой вокруг оси Oy.

4. Плоскость проходит через ось цилиндра, причем площадь осевого сечения цилиндра относится к площади его основания как 4: p. Найдите угол между диагоналями осевого сечения.

Вариант 2

1. Нарисуйте фигуру, которая получается при вращении ромба ABCD вокруг прямой a, проходящей через вершину C и перпендикулярной диагонали AC.

2. Нарисуйте фигуру, которая получается вращением круга вокруг хорды, не являющейся диаметром.

3. Кривая задана уравнением y = , 0x4. Нарисуйте фигуру, которая получится при вращении этой кривой вокруг оси Ox.

4. Высота конуса равна 20 см, угол между нею и образующей 600. Найдите площадь сечения, проведенного через две взаимно перпендикулярные образующие конуса.

36. Вписанные и описанные цилиндры

Вариант 1

1. В сферу радиуса 10 см вписан цилиндр, диагональ осевого сечения которого наклонена к плоскости основания под углом 300. Найдите высоту цилиндра и радиус его основания.

2. Найдите радиус основания цилиндра, описанного около сферы радиуса R.

3. В равносторонний цилиндр (высота равна диаметру основания), радиус основания которого равен r, вписана правильная треугольная призма. Найдите площадь сечения призмы, проходящего через ось цилиндра и боковое ребро призмы.

4. Около равностороннего цилиндра, радиус основания которого равен r, описана правильная четырехугольная призма. Найдите площади ее граней.

Вариант 2

1. В сферу вписан цилиндр, образующая которого равна 8 см и диагональ осевого сечения наклонена к плоскости основания под углом 600. Найдите радиусы сферы и основания цилиндра.

2. Найдите образующую цилиндра, описанного около сферы радиуса R.

3. В равносторонний цилиндр (высота равна диаметру основания), радиус основания которого равен r, вписана правильная четырехугольная призма. Найдите площадь сечения призмы, проходящего через ось цилиндра и боковое ребро призмы.

4. Около равностороннего цилиндра, радиус основания которого равен r, описана правильная треугольная призма. Найдите площади ее граней.

37*. Сечения цилиндра плоскостью. Эллипс

Вариант 1

1. Изобразите цилиндр и эллипс, являющийся пересечением боковой поверхности цилиндра плоскостью, образующей с основанием цилиндра угол 450.

2. Боковая поверхность цилиндра пересечена плоскостью, образующей с осью цилиндра угол 300. Найдите большую ось эллипса, получившегося в сечении, если радиус основания цилиндра равен R.

3. Плоскость пересекает боковую поверхность цилиндра и образует с плоскостью основания угол 300. Найдите расстояние между фокусами эллипса, получившегося в сечении, если радиус основания цилиндра равен 3 см.

4. Цилиндр, радиус основания которого равен R, пересечен плоскостью, образующей с основанием цилиндра угол 450. Найдите сумму расстояний от точек эллипса, получившегося в сечении, до фокусов.

Вариант 2

1. Изобразите цилиндр и эллипс, являющийся пересечением боковой поверхности цилиндра плоскостью, образующей с основанием цилиндра угол 600.

2. Под каким углом к плоскости основания цилиндра нужно провести плоскость, чтобы в сечении боковой поверхности получить эллипс, у которого большая ось в два раза больше малой?

3. Плоскость пересекает боковую поверхность цилиндра и образует с плоскостью основания угол 450. Найдите расстояние между фокусами эллипса, получившегося в сечении, если радиус основания цилиндра равен 2 см.

4. Цилиндр, радиус основания которого равен R, пересечен плоскостью, образующей с основанием цилиндра угол 300. Найдите сумму расстояний от точек эллипса, получившего в сечении, до фокусов.



Похожие документы:

  1. Пояснительная записка рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования

    Пояснительная записка
    ... . О с н о в н а я ц е л ь – сформировать представления учащихся об основных понятиях и аксиомах стереометрии, познакомить с основными пространственными фигурами и моделированием многогранников. Особенностью ...
  2. Зачет № «Начала стереометрии» Срок сдачи

    Документ
    ... года История возникновения и развития геометрии. Основные понятия стереометрии. Пространственные фигуры. Моделирование многогранников. В ... обучающийся должен уметь: использовать основные понятия и аксиомы стереометрии при решении стандартных задач; ...
  3. Смирнова И. М. Геометрия. 10-11 кл.: учебн для общеобразовательных учреждений (базовый уровень)

    Документ
    ... Моделирование многогранников. Развёртка. Перечислять основные понятия и аксиомы стереометрии. Приводить примеры реальных объектов ... многогранников. Развёртка. Перечислять основные понятия и аксиомы стереометрии. Приводить примеры реальных объектов ...
  4. Методические рекомендации к учебникам математики для 10 11 классов

    Методические рекомендации
    ... , 46 - 2 Введение. Предмет стереометрии. Основные понятия и аксиомы стереометрии. Первые следствия из аксиом 2 2 ... и икосаэдр) 1 § 3*. Аксиомы, законы, правила 2 9. Аксиомы стереометрии Основные понятия стереометрии (точка, прямая, плоскость, ...
  5. Рабочая программа учебного курса «Геометрия»

    Рабочая программа
    ... стереометрии. Аксиомы стереометрии. Некоторые следствия из аксиом. Основная цель – сформировать представления учащихся об основных понятиях и аксиомах стереометрии, их ...

Другие похожие документы..