Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Конкурс'
1. Подведение итогов открытого конкурса № 340/ОКЭ-Сахалин-ТрансТелеКом/13 на право заключения договоров по выполнению полного комплекса работ, связанн...полностью>>
'Документ'
Овладевать умением находить проблему текста, определять авторскую позицию, выражать собственное мнение по заявленной проблеме, подбирать убедительные ...полностью>>
'Документ'
Аллергены – лекарственные препараты представляют собой водно-солевые экстракты белково-полисахаридных комплексов, выделенных из широкого круга веществ...полностью>>
'Документ'
Период завершения обучения в школе это время первого взрослого испытания, которое показывает насколько выпускники готовы к взрослой жизни. Результаты ...полностью>>

Главная > Рабочая программа

Сохрани ссылку в одной из сетей:
Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

1

Смотреть полностью

Рабочая программа по математике

6 класс

Учебник Мерзляк А.Г. и др. 2014-2015 уч.год

МБОУ «Гимназия №2» г. Астрахани

1. Пояснительная записка

Рабочая программа по предмету «Математика. 6 класс» составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства образования и науки РФ от 17 декабря 2010 года № 1897, Примерной ООП ООО МБОУ «Гимназия №2», на основе Примерной программы «Математика 5-9 кл.» для ОУ, использующих систему учебников «Алгоритм успеха», с учетом рекомендаций авторской Программы для общеобразовательных учреждений: Математика. 5-9 классы, ФГОС / авт.-сост. Е.В. Буцко, А.Г. Мерзляк/.

Математика является одним из опорных школьных предметов. Математические знания и умения необходимы для изучения алгебры и геометрии в 7-9 классах, а также для изучения смежных дисциплин.

Задачи изучения математики в 5-6 классах:

  • развитие логического и критического мышления, формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимых для различных сфер человеческой деятельности;

  • овладение математическими знаниями и умениями, необходимыми для продолжения обучения в основной и старшей школе (7-11 классы), изучения смежных дисциплин и применения их в повседневной жизни.

  • развитие представления о математике, как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования.

. С точки зрения воспитания творческой личности особенно важно, чтобы в структуру мышления учащихся, кроме алгоритмических умений и навыков, ко­торые сформулированы в стандартных правилах, формулах и алгоритмах действий, вошли эвристические приёмы как общего, так и конкретного характера. Эти приёмы, в част­ности, формируются при поиске решения задач высших уровней сложности. В процессе изучения математики так­же формируются и такие качества мышления, как сила и гибкость, конструктивность и критичность. Для адапта­ции в современном информационном обществе важным фактором является формирование математического стиля мышления, включающее в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классифика­цию и систематизацию, абстрагирование и аналогию.

Обучение математике даёт возможность школьникам на­учиться планировать свою деятельность, критически оце­нивать её, принимать самостоятельные решения, отстаи­вать свои взгляды и убеждения.

В процессе изучения математики школьники учатся изла­гать свои мысли ясно и исчерпывающе, приобретают навыки чёткого и грамотного выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и письменную речь.

Знакомство с историей развития математики как науки формирует у учащихся представления о математике как ча­сти общечеловеческой культуры.

Значительное внимание в изложении теоретического ма­териала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается осо­бенностями изложения теоретического материала и упраж­нениями на сравнение, анализ, выделение главного, уста­новление связей, классификацию, обобщение и системати­зацию. Особо акцентируются содержательное раскрытие математических понятий, толкование сущности математи­ческих методов и области их применения, демонстрация возможностей применения теоретических знаний для реше­ния задач прикладного характера, например решения текс­товых задач, денежных и процентных расчётов, умение пользоваться количественной информацией, представлен­ной в различных формах. Осозна­ние общего, существенного является основной базой для ре­шения упражнений. Важно приводить детальные поясне­ния к решению типовых упражнений. Этим раскрывается суть метода, подхода, предлагается алгоритм или эвристи­ческая схема решения упражнений определённого типа.

Курс математики 6 класса является фундаментом для математического образования и развития школьников, доминирующей функцией при его изучении в этом возрасте является интеллектуальное развитие учащихся. Курс по­строен на взвешенном соотношении новых и ранее усвоен­ных знаний, обязательных и дополнительных тем для изу­чения, а также учитывает возрастные и индивидуальные особенности усвоения знаний учащимися.

Практическая значимость школьного курса математики 6 класса состоит в том, что предметом её изучения явля­ются пространственные формы и количественные отноше­ния реального мира. В современном обществе математиче­ская подготовка необходима каждому человеку, так как ма­тематика присутствует во всех сферах человеческой деятельности.

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и показывает распределение учебных часов по разделам курса.

Цели и задачи освоения дисциплины

Обучение математике в основной школе направлено на достижение следующих целей:

в направлении личностного развития

  • развитие логического и критического мышления, куль­туры речи, способности к умственному эксперименту;

  • формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

  • воспитание качеств личности, обеспечивающих социаль­ную мобильность, способность принимать самостоятельные решения;

  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

  • развитие интереса к математическому творчеству и ма­тематических способностей;

в метапредметном направлении

  • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в раз­витии цивилизации и современного общества;

  • развитие представлений о математике как форме описа­ния и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

  • формирование общих способов интеллектуальной дея­тельности, характерных для математики и являющихся осно­вой познавательной культуры, значимой для различных сфер человеческой деятельности;

в предметном направлении

  • овладение математическими знаниями и умениями, не­обходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;

  • создание фундамента для математического развития, формирования механизмов мышления, характерных для мате­матической деятельности.

Применительно к курсу математики в 6-м классе цели состоят в систематическом развитии понятия числа; выработке умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики и подготовке учащихся к изучению систематических курсов алгебры и геометрии.

2. Общая характеристика курса математики

Программа ориентирована, главным образом, на формирование научных (математических) понятий, а не только лишь на выработку практических навыков и умений. Это предполагает особую организацию учебного процесса в форме учебной деятельности школьников.

Содержание учебной деятельности должно развертываться в теоретической форме – от общего к частному, от абстрактного к конкретному. Освоение понятий должно происходить не в форме отработки словесных формулировок, а путем введения учащихся в новый круг задач и включением их в деятельность по поиску общего способа их решения.

Поиск способа решения новой задачи является мотивационным ядром учебной деятельности, той ценностной установкой учеников, которая складывается в виде формального эффекта обучения как личностно-смысловое образование, основа желания и умения учиться.

Необходимость поиска способа решения новой задачи не диктуется требованиями учителя, учебника или программы, она должна быть обусловлена для детей внутренней логикой содержания обучения. Когда ученики обнаруживают, что задача не может быть решена теми способами, которыми они уже владеют, они сами заявляют о необходимости поиска новых способов действия. Иными словами, уже начав действовать, уже стремясь получить результат, дети фиксируют невозможность его немедленного достижения и необходимость открытия «чего-то нового». Т.о. новое понятие или способ действия не возникает для детей случайно; каждое следующее понятие с необходимостью вытекает из предыдущего. При этом принципиально, что поисковые действия детей (их пробы, мнения, предложения, вопросы) должны быть направлены не на внешние чувственно-представленные, непосредственно наблюдаемые свойства вещей, а на общий принцип их строения. Вскрывая этот общий принцип посредством собственных действий, осуществляемых не в словесной, а предметно-чувственной форме, ребенок тем самым обнаруживает существенное отношение, лежащее в основании нового понятия.

Отношение, которое дети обнаруживают, преобразуя объект изучения, не обладает чувственной наглядностью, оно нуждается в особом – модельном способе презентации. При этом не всякое изображение можно назвать учебной моделью, а лишь такое, которое отображает внутренние особенности объекта, не наблюдаемые непосредственно, и обеспечивает их дальнейший анализ. Учебная модель, выступая как продукт мыслительного анализа, затем сама может стать особым средством мыслительной деятельности.

С одной стороны, в процессе построения модели происходит абстракция отношения от его предметных носителей. С другой стороны, уже построенная модель, в которой отношение представлено материально, позволяет преобразовывать ее, открывая новые свойства этого отношения. Преобразовывая и переконструируя учебную модель, школьники получают возможность изучать свойства отношения как такового, без «затемнения» привходящими обстоятельствами. Представленная моделью абстракция затем конкретизируется в различных частных условиях, что позволяет применять найденный общий способ к целому классу частных задач.

Для того чтобы дети смогли через собственные поисковые действия открыть новый способ действия, необходимы особые формы организации совместной учебной деятельности класса и учителя. Основой этой организации является общеклассная дискуссия, в которой каждое высказанное предложение оценивается остальными участниками обсуждения с точки зрения соответствия способа действия и достигнутого результата. Предложения учителя подлежат такому же контролю и оценке, что и предложения учеников. При этом достоинства и недостатки предлагаемых способов действия оцениваются содержательно и ученики участвуют в выработке критериев контроля и оценки наряду с учителем. Благодаря этому у школьников складывается способность к самоконтролю и самооценке как базисным компонентам умения учиться.

Осуществление школьниками учебной деятельности способствует формированию у них таких мыслительных действий, как рефлексия, анализ и планирование, являющихся основой теоретического мышления и, одновременно развитию других познавательных процессов – восприятия, воображения, памяти. Это дает основание говорить о развивающем значении специальной организации учебной деятельности школьников.

В курсе математики 5-6 классов могут быть условно выделены четыре содержательные области: развитие понятия числа, величины и отношения между ними, элементы геометрии, элементы теории вероятностей и статистики.

Первая область посвящена дальнейшему развитию понятия числа: введению новых видов чисел ­­– обыкновенных и позиционных (десятичных) дробей, отрицательных чисел, формированию представления о системе действительных чисел.

Новые виды чисел появляются из тех же оснований, что и натуральные числа на предыдущем этапе. Исходным отношением, порождающим все виды действительного числа, является отношение величин, получаемое в результате решения задачи измерения одной величины с помощью другой, принятой в качестве единицы измерения; меняются лишь условия этой задачи, что и определяет различия видов числа и способов его обозначения. Так различные виды дробей появляются в ситуации, когда единица не укладывается в измеряемой величине целое число раз. А введение нового свойства величины – ее направленности – позволяет из того же исходного отношения получить отрицательные числа (отрицательному числу соответствует ситуация когда измеряемая величина и единица измерения имеют противоположные направления).

Появление каждого нового вида чисел сопровождается определением их места на координатной прямой. При этом координатная прямая выступает не как иллюстрация, а как основное средство моделирования, с помощью которого устанавливаются свойства чисел и способы действий с ними, которые лишь затем «отрываются» от координатной прямой и приобретают алгоритмические формы.

Тем самым к концу 6 класса у учащихся формируется представление о системе действительных чисел.

К этой же содержательной области отнесен ряд вопросов, связанных с формальной стороной использования чисел: вычисление значений числовых и буквенных выражений, решение линейных уравнений и простейших неравенств, изображение их решений на координатной прямой, описание числовых промежутков. Вводится координатная плоскость, рассматривается построение и описание простейших линий и областей на координатной плоскости. Рассмотрение этого материала направлено на обеспечение перехода к начинающемуся изучению в седьмом классе систематического курса алгебры.

Основным содержанием области «Величины и отношения между ними» являются вопросы, связанные с применением числового инструментария к решению различных прикладных задач, моделирование отношений (представлению в виде чертежей, схем, диаграмм, таблиц и т.п.), анализ и решение текстовых задач.

Геометрический материал курса в значительной степени связывается с изучением величин и действий с ними. Однако он имеет и собственно геометрическое содержание, связанное с построением идеальных геометрических образов и развитием пространственных представлений, что может рассматриваться как подготовка к начинающемуся в седьмом классе изучению систематического курса геометрии.

Одной из особенностей разворачивания геометрического материала является конструктивный подход к геометрическим понятиям. Такой подход естественным образом приводит к большому числу задач на построение, «разрезание» и «перекраивание» геометрических фигур. Таким образом, также как и в арифметической линии, при формировании понятий основополагающую роль играют предметные действия учащихся.

Последняя содержательная область посвящена начальным понятиям теории вероятностей, вводится представление о случайных событиях и способах определения их вероятностей: классическом и статистическом.

3. Место предмета в учебном плане школы.

Данная рабочая программа реализуется как компонент ООП МБОУ «Гимназия №2» на основной ступени. Курс «Математика» как единый предмет изучается в 5-6 классах в общем объеме 350 ч (5 ч в неделю). Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации в примерной программе основного общего образования по математике (1 вариант) на изучение предмета отводиться не менее 175 часов в год из расчета 5 часов в неделю.

В целях выполнения требований БУП 2010 г. (вне программы) предусмотрены часы, реализуемые в рамках внеурочной деятельности по предмету (подготовка учащихся к НПК, олимпиадам, а также проведение уроков обобщения и закрепления материала в период предметной декады), не менее 5 часов в год.

В учебном процессе используются следующие урочные и внеурочные формы работы:

Урочные формы

Внеурочные формы

  • уроки различных типов и форм;

  • общеклассная дискуссия – коллективная работа класса по постановке учебных задач, обсуждению результатов;

  • презентация – предъявление учащимися результатов самостоятельной работы;

  • проверочная работа;

  • проектирование в рамках уроков.

  • консультация – учитель работает с небольшой группой учащихся по их запросу;

  • мастерская – индивидуальная работа учащихся над своими математическими проблемами;

  • самостоятельная работа учащихся:

  • а) работа над совершенствованием навыка;

  • б) творческая работа по инициативе учащегося;

4. Личностные, метапредметные и предметные результаты освоения содержания курса математики

Изучение математики по данной программе способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих тре­бованиям федерального государственного образовательного стандарта основного общего образования.

Личностные результаты:

  • контролировать процесс математической деятельности;

  • Проявлять инициативу, находчивость и активность при решении математических задач;

  • осознать вклад отечественных ученых в развитие мировой науки, воспитать в себе чувство патриотизма, уважения к Отечеству;

  • ответственно относиться к учению, усилить мотивацию к обучению и познанию;

  • формирование осознанного выбора на основе уважительного отношения к труду.

Метапредметные результаты:

Ученик научится:

  • соотносить свои действия с планируемыми ре­зультатами,

  • осуществлять контроль своей деятельности в процессе достижения результата;

  • находить в различных источниках информа­цию, необходимую для решения математических про­блем;

  • понимать и использовать математические сред­ства наглядности (графики, таблицы, схемы и др.) для иллюстрации;

  • действовать в соответствии с предложенным алгоритмом;

  • использовать первоначальные представления об идеях и о методах математики как об универсальном языке науки и тех­ники, о средстве моделирования явлений и процессов.

Ученик получит возможность:

  • самостоятельно определять цели своего обуче­ния;

  • использовать математические сред­ства наглядности (графики, таблицы, схемы и др.) для интерпретации, аргументации;

  • определять понятия, создавать обобщения, уста­навливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;

  • устанавливать причинно-следственные связи;

  • видеть математическую задачу в контексте про­блемной ситуации в других дисциплинах, в окружаю­щей жизни;

Предметные результаты:

Ученик научится:

  • выполнять вычисления с натуральными числами, обыкновенными и десятичными дробями;

  • решать текстовые задачи арифметическим способами с помощью составления и решения уравнений;

  • изображать фигуры на плоскости;

  • использовать геометрический «язык» для описания предметов окружающего мира;

  • распознавать равные и симметричные фигуры;

  • проводить несложные практические вычисления с процентами, использовать прикидку и оценку; вы­полнять необходимые измерения;

  • использовать буквенную символику для записи об­щих утверждений, формул, выражений, уравне­ний;

Ученик получит возможность :

  • осознавать значения математики для повседневной жиз­ни человека;

  • иметь представление о математической науке , как сфере мате­матической деятельности, об этапах её развития, о её значимости для развития цивилизации;

  • работать с учебным математическим текстом (анализировать, извлекать необходимую ин­формацию),

  • точно и грамотно выражать свои мысли с применением математической терминологии и симво­лики,

  • проводить классификации.

  • владеть базовым понятийным аппаратом по основным разделам содержания;

  • получить практически значимые математические умения и навы­ки, их

применение к решению математических и нема­тематических задач.

5. Содержание курса математики 6 класса

Арифметика

Натуральные числа

  • Делители и кратные.

  • Признаки делимости на 2, на 5, на 10, на 3, ,на 9.

  • Простые и составные числа.

  • Разложение чисел на простые множители.

  • Наибольший общий делитель.

  • Наименьшее общее кратное.

  • Решение текстовых задач арифметическими способами.

Дроби

  • Обыкновенные дроби.

  • Сравнение обыкновенных дробей и смешанных чисел. Арифметические действия с обыкновенными дробями и смешанными числами.

  • Прикидки результатов вычислений.

  • Бесконечные периодические десятичные дроби.

  • Десятичное приближение обыкновенной дроби.

  • Отношение. Процентное отношение двух чисел.

  • Деление числа в данном отношении. Масштаб.

  • Пропорции. Основное свойство пропорции. Прямая и обратная пропорциональные зависимости.

  • Решение текстовых задач арифметическими спосо­бами.

Рациональные числа

  • Положительные, отрицательные числа и число 0.

  • Противоположные числа. Модуль числа.

  • Целые числа. Рациональные числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства сложения и умножения рациональных чисел.

  • Координатная прямая. Координатная плоскость.

Величины. Зависимости между величинами

  • Единицы длины, площади, времени, ско­рости.

  • Примеры зависимостей между величинами. Представ­ление зависимостей в виде формул. Вычисления по фор­мулам.

Числовые и буквенные выражения. Уравнения

  • Числовые выражения. Значение числового выражения. Порядок действий в числовых выражениях. Буквенные выражения. Формулы. Раскрытие скобок. Подобные слагаемые, приведение подобных слагаемых.

  • Уравнения. Корень уравнения. Основные свойства уравнения.

  • Решение текстовых задач с помощью уравнений.

Элементы статистики, вероятности.

  • Представление данных в виде таблиц, круговых и столбчатых диаграмм, графиков.

  • . Случайное событие. Достоверное и невозможное события. Вероятность случайного события.

Геометрические фигуры.

Измерения геометрических величин

  • Окружность и круг. Длина окружности.

  • Равенство фигур.. Площадь круга. Ось сим­метрии фигуры.

  • Наглядные представления о пространственных фигурах: конус, цилиндр, шар, сфера. Примеры разверток цилиндра и конуса.

  • Взаимное расположение двух прямых. Перпендикулярные прямые. Параллельные прямые.

  • Осевая и центральная симметрии.

Математика в историческом развитии

Римская система счисления. Позиционные системы счисления. Обозначение цифр в Древней Руси. Старинные меры длины. Введение метра как единицы длины. Метриче­ская система мер в России, в Европе. История формирова­ния математических символов. Дроби в Вавилоне, Египте, Риме, на Руси. Открытие десятичных дробей. Мир простых чисел. Золотое сечение. Число нуль. Появление отрицательных чисел.

Примерное тематическое планирование. Математика. 6 класс

(5 часов в неделю, всего 175 часов)

Номер

параграфа

Содержание учебного материала

Количество часов

Характеристика основных видов деятельности ученика
(на уровне учебных действий)

Повторение

2 часа

Глава 1

Делимость натуральных чисел

17

1

Делители и кратные

2

Формулировать определения понятий: делитель, кратное, простое число, составное число, общий делитель, наибольший общий делитель, взаимно простые числа, общее кратное, наименьшее общее кратное и признаки делимости на 2, на 3, на 5, на 9, на 10.

Описывать правила нахождения наибольшего общего делителя (НОД), наименьшего общего кратного (НОК) нескольких чисел, разложения натурального числа на простые множители

2

Признаки делимости на 10, на 5 и на 2

3

3

Признаки делимости на 9 и на 3

3

4

Простые и составные числа

2

5

Наибольший общий делитель

3

6

Наименьшее общее кратное

3

Контрольная работа № 1

1

Глава 2

Обыкновенные дроби

38

7

Основное свойство дроби

2

Формулировать определения понятий: несократимая дробь, общий знаменатель двух дробей, взаимно обратные числа. Применять основное свойство дроби для сокращения дробей. Приводить дроби к новому знаменателю. Сравнивать обыкновенные дроби. Выполнять арифметические действия над обыкновенными дробями.

Находить дробь от числа и число по заданному значению его дроби. Преобразовывать обыкновенные дроби в десятичные. Находить десятичное приближение обыкновенной дроби

8

Сокращение дробей

3

9

Приведение дробей к общему знаменателю. Сравнение дробей

4

10

Сложение и вычитание дробей

5

Контрольная работа № 2

1

11

Умножение дробей

5

12

Нахождение дроби от числа

3

Контрольная работа № 3

1

13

Взаимно обратные числа

1

14

Деление дробей

5

15

Нахождение числа по значению его дроби

3

16

Преобразование обыкновенных дробей в десятичные

1

17

Бесконечные периодические десятичные дроби

1

18

Десятичное приближение обыкновенной дроби

2

Контрольная работа № 4

1

Глава 3

Отношения и пропорции

28

19

Отношения

2

Формулировать определения понятий: отношение, пропорция, процентное отношение двух чисел, прямо пропорциональные и обратно пропорциональные величины. Применять основное свойство отношения и основное свойство пропорции. Приводить примеры и описывать свойства величин, находящихся в прямой и обратной пропорциональных зависимостях. Находить процентное отношение двух чисел. Делить число на пропорциональные части.

Записывать с помощью букв основные свойства дроби, отношения, пропорции.

Анализировать информацию, представленную

в виде столбчатых и круговых диаграмм. Представлять информацию в виде столбчатых и круговых диаграмм.

Приводить примеры случайных событий. Находить вероятность случайного события в опытах

с равновозможными исходами.

Распознавать на чертежах и рисунках окружность, круг, цилиндр, конус, сферу, шар и их элементы. Распознавать в окружающем мире модели этих фигур. Строить с помощью циркуля окружность заданного радиуса. Изображать развёртки цилиндра и конуса. Называть приближённое значение числа. Находить с помощью формул длину окружности, площадь круга

20

Пропорции

5

21

Процентное отношение двух чисел

3

Контрольная работа № 5

1

22

Прямая и обратная пропорциональные зависимости

2

23

Деление числа в данном отношении

2

24

Окружность и круг

2

25

Длина окружности. Площадь круга

3

26

Цилиндр, конус, шар

1

27

Диаграммы

3

28

Случайные события. Вероятность случайного события

3

Контрольная работа № 6

1

Глава 4

Рациональные числа

и действия над ними

72

29

Положительные

и отрицательные числа

2

Приводить примеры использования положительных и отрицательных чисел. Формулировать определение координатной прямой. Строить на координатной прямой точку с заданной координатой, определять координату точки.

Характеризовать множество целых чисел. Объяснять понятие множества рациональных чисел.

Формулировать определение модуля числа. Находить модуль числа.

Сравнивать рациональные числа. Выполнять арифметические действия над рациональными числами. Записывать свойства арифметических действий над рациональными числами в виде формул. Называть коэффициент буквенного выражения.

Применять свойства при решении уравнений. Решать текстовые задачи с помощью уравнений.

Распознавать на чертежах и рисунках перпендикулярные и параллельные прямые, фигуры, имеющие ось симметрии, центр симметрии. Указывать в окружающем мире модели этих фигур. Формулировать определение перпендикулярных прямых и параллельных прямых. Строить с помощью угольника перпендикулярные прямые и параллельные прямые.

Объяснять и иллюстрировать понятие координатной плоскости. Строить на координатной плоскости точки с заданными координатами, определять координаты точек на плоскости. Строить отдельные графики зависимостей между величинами по точкам. Анализировать графики зависимостей между величинами (расстояние, время, температура и т. п.)

30

Координатная прямая

3

31

Целые числа.

Рациональные числа

2

32

Модуль числа

3

33

Сравнение чисел

4

Контрольная работа № 7

1

34

Сложение рациональных чисел

4

35

Свойства сложения рациональных чисел

2

36

Вычитание рациональных чисел

5

Контрольная работа № 8

1

37

Умножение рациональных чисел

4

38

Свойства умножения рациональных чисел

3

39

Коэффициент.

Распределительное свойство умножения

5

40

Деление рациональных чисел

4

Контрольная работа № 9

1

41

Решение уравнений

5

42

Решение задач с помощью уравнений

6

Контрольная работа № 10

1

43

Перпендикулярные прямые

3

44

Осевая и центральная симметрии

3

45

Параллельные прямые

2

46

Координатная плоскость

4

47

Графики

3

Контрольная работа № 11

1

Повторение

и систематизация

учебного материала

18 (20-2)

Упражнения

для повторения курса

6 класса

17 (19-2)

Контрольная работа № 12

1

7. Учебно-методическое и материально – техническое обеспечение

образовательного процесса при реализации данной программы

Учебно-методический комплекс учителя:

  1. Математика. 6 класс: учебник для учащихся общеобразовательных

учреждений/ А.Г.Мерзляк, В.Б.Полонский, М.С.Якир. - М.: Вентана-Граф, 2014.

2. Математика. 6 класс: дидактические материалы: пособие для учащихся общеобразовательных учреждений/ А.Г. Мерзляк, В.Б. Полонский, Е.М. Рабинович, М.С.Якир. - М.: Вентана-Граф, 2013, 2014 г.г.

3.А. Г. Мерзляк, В. Б. Полонский, Е.М. Рабинович, М. С. Якир. Сборник задач и заданий для тематического оценивания по математике для 5 класса. Харьков, «Гимназия», 2010

4.Программа по математике (5-6 кл.). Авторы: А.Г. Мерзляк, В.Б. Полонский, М.С. Якир.

Учебно-методический комплекс ученика:

1.Математика. 6 класс: учебник для учащихся общеобразовательных

учреждений/ А.Г.Мерзляк, В.Б.Полонский, М.С.Якир. - М.: Вентана-Граф, 2013.

2.Математика. 6 класс: Рабочая тетрадь 1,2 / А. Г.Мерзляк, В.Б.Полонский, М.С.Якир. - М.: Вентанараф, 2013, 2014 г.г.

Оборудование.

1.Автоматизированное рабочее место учителя: компьютер, проектор.

Электронные образовательные ресурсы

1. Федеральный государственный образовательный стандарт (официальный сайт) /

2. ФГОС (основное общее образование) /catalog.aspx?CatalogId=2587

3. Примерная основная образовательная программа образовательного учреждения /catalog.aspx?CatalogId=6400

4. Примерные программы по учебным предметам (математика) /catalog.aspx?CatalogId=2629

5. Глоссарий ФГОС /catalog.aspx?CatalogId=230

6. Закон РФ «Об образовании» /catalog.aspx?CatalogId=2666

7. Концепция духовно-нравственного развития и воспитания личности гражданина России /catalog.aspx?CatalogId=985

8.Концепция фундаментального ядра содержания общего образования /catalog.aspx?CatalogId=2619

9. Видеолекции разработчиков стандартов /catalog.aspx?CatalogId=3729

10. Сайт издательского центра «Вентана-Граф» /

11. Система учебников «Алгоритм успеха». Примерная основная образовательная программа образовательного учреждения /tabid/205/Default.aspx

12. Программа по математике (5-9 класс). Издательский центр «Вентана-Граф» /tabid/210/Default.aspx

13. Федеральный портал «Российское образование»

14. Российский общеобразовательный портал

15. Федеральный портал «Информационно-коммуникационные технологии в образовании»

16. Федеральный портал «Непрерывная подготовка преподавателей»

17. Всероссийский интернет-педсовет

18. Образовательные ресурсы интернета (математика) /edu/math.htm

19. Методическая служба издательства «Бином» /

20. Сайт «Электронные образовательные ресурсы» /

21. Федеральный центр цифровых образовательных ресурсов

22. Единая коллекция цифровых образовательных ресурсов

23. Портал «Открытый класс» /

24. Презентации по всем предметам /

25. Сайт учителя математики Е.М.Савченко/

26. Карман для математика /

27. Портал «Дневник.ру»

8. Планируемые результаты обучения математике в 6 классе

Арифметика

По окончании изучения курса учащийся научится:

  • понимать особенности десятичной системы счисления;

  • использовать понятия, связанные с делимостью натуральных чисел;

  • выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

  • сравнивать и упорядочивать рациональные числа;

  • выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;

  • использовать понятия и умения, связанные с пропорциональностью величин, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты;

Учащийся получит возможность:

  • углубить и развить представления о натуральных числах и свойствах делимости;

  • научиться использовать приемы, рационализирующие вычисления, приобрести навык контролировать вычис­ления, выбирая подходящий для ситуации способ.

Числовые и буквенные выражения. Уравнения

По окончании изучения курса учащийся научится:

  • выполнять операции с числовыми выражениями;

  • решать линейные уравнения, решать текстовые задачи алгебраическим методом.

Учащийся получит возможность:

  • развить представления о буквенных выражениях;

  • овладеть специальными приёмами решения уравнений, применять аппарат уравнений для решения как тексто­вых, так и практических задач.

Геометрические фигуры. Измерение геометрических величин

По окончании изучения курса учащийся научится:

  • распознавать на чертежах, рисунках, моделях и в окру­жающем мире плоские и пространственные геометриче­ские фигуры и их элементы;

  • распознавать на чертежах и рисунках окружность, круг, цилиндр, конус, сферу, шар и их элементы;

  • изображать развёртки цилиндра и конуса;

  • строить с помощью циркуля окружность заданного радиуса.

Учащийся получит возможность:

  • научиться вычислять длину окружности, площадь круга;

  • углубить и развить представления о пространственных геометрических фигурах;

  • научиться применять понятие развёртки для выполне­ния практических расчётов.

Элементы статистики, вероятности.

По окончании изучения курса учащийся научится:

  • представлять данные в виде таблиц, круговых и столбчатых диаграмм, графиков;

  • распознавать случайные события.

Учащийся получит возможность:

  • научиться находить вероятность случайного события.

Приложение 1 к РП по математике, 6 класс

График выполнения

практической части программы по математике в 6А,Б классах

(контрольные работы)

п/п

Контрольная работа

по теме

Дата

6 кл

План

Факт

1

Входная работа

19.09.

2

Делимость натуральных чисел.

24.09.

3

Обыкновенные дроби.

15.10.

4

Обыкновенные дроби.

28.10.

5

Обыкновенные дроби.

24.11.

6

Отношения и пропорции.

09.12.

7

Отношения и пропорции.

14.01.

8

Рациональные числа и действия над ними.

03.02.

9

Рациональные числа и действия над ними.

19.02.

10

Рациональные числа и действия над ними.

19.03.

11

Рациональные числа и действия над ними.

15.04.

12

Рациональные числа и действия над ними.

11.05.

13

Итоговая работа

28.05.

Приложение 2 к РП по математике, 6 класс

Рекомендации по оценке знаний и умений учащихся по математике

  1. Содержание и объем материала, подлежащего проверке, определяется программой. При проверке усвоения материала нужно выявлять полноту, прочность усвоения учащимися теории и умения применять ее на практике в знакомых и незнакомых ситуациях.

  2. Основными формами проверки знаний и умений учащихся по математике являются письменная контрольная работа и устный опрос.

При оценке письменных и устных ответов учитель в первую очередь учитывает показанные учащимися знания и умения. Оценка зависит также от наличия и характера погрешностей, допущенных учащимися.

  1. Среди погрешностей выделяются ошибки и недочеты. Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел основными знаниями, умениями, указанными в программе.

К недочетам относятся погрешности, свидетельствующие о недостаточно полном или недостаточно прочном усвоении основных знаний и умений или об отсутствии знаний, не считающихся в программе основными. Недочетами также считаются: погрешности, которые не привели к искажению смысла полученного учеником задания или способа его выполнения; неаккуратная запись; небрежное выполнение чертежа.

Граница между ошибками и недочетами является в некоторой степени условной. При одних обстоятельствах допущенная учащимися погрешность может рассматриваться учителем как ошибка, в другое время и при других обстоятельствах — как недочет.

  1. Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач.

Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты я обоснованные выводы, а его изложение и письменная запись математически грамотны и отличаются последовательностью и аккуратностью.

Решение задачи считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно выполнены нужные вычисления и преобразования, получен верный ответ, последовательно и аккуратно записано решение.

  1. Оценка ответа учащегося при устном и письменном опросе проводится по пятибалльной системе, т. е. за ответ выставляется одна из отметок: 2 (неудовлетворительно), 3 (удовлетворительно), 4 (хорошо), 5 (отлично).

  2. Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии учащегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные учащемуся дополнительно после выполнения им заданий.

Критерии ошибок

К грубым ошибкам относятся ошибки, которые обнаруживают незнание учащимися формул, правил, основных свойств, теорем и неумение их применять; незнание приемов решения задач, рассматриваемых в учебниках, а также вычислительные ошибки, если они не являются опиской;

К негрубым ошибкам относятся: потеря корня или сохранение в ответе постороннего корня; отбрасывание без объяснений одного из них и равнозначные им;

К недочетам относятся: нерациональное решение, описки, недостаточность или отсутствие пояснений, обоснований в решениях.

Оценка устных ответов учащихся

Ответ оценивается

отметкой «5», если ученик:

полно раскрыл содержание материала в объеме, предусмотренном программой и учебником, изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;

правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;

продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при отработке умений и навыков;

отвечал самостоятельно без наводящих вопросов учителя. Возможны одна - две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

Ответ оценивается

отметкой «4», если он удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

в изложении допущены небольшие пробелы, не исказившие математическое содержание ответа; допущены один - два недочета при освещении основного содержания ответа, исправленные по замечанию учителя;

допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию учителя.

Отметка «3» ставится в следующих случаях:

неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»);

имелись затруднения или допущены ошибки в определении понятий, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя; ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях: не раскрыто основное содержание учебного материала;

обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала; допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Оценка письменных работ учащихся

Отметка «5» ставится, если: работа выполнена полностью;

в логических рассуждениях и обосновании решения нет пробелов и ошибок;

в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала).

Отметка «4» ставится, если:

работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

допущена одна ошибка или два-три недочета в выкладках, рисунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки).

Отметка «3» ставится, если:

допущены более одной ошибки или более двух-трех недочетов в выкладках, чертежах или графиках, но учащийся владеет обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

допущены существенные ошибки, показавшие, что учащийся не владеет обязательными умениями по данной теме в полной мере.

Текущий контроль осуществляется в форме тестовых, самостоятельных и контрольных работ.

10

1

Смотреть полностью


Похожие документы:

  1. Рабочая программа по математике (3)

    Рабочая программа
    Рабочая программа по математике 10-11 класс, III ступень, профильный уровень Рабочая программа составлена на основе программы общеобразовательных ... работа 1 1 Пояснительная записка Статус документа Рабочая программа по алгебре 10 класса составлена на ...
  2. Рабочая программа по математике (7)

    Рабочая программа
    Рабочая программа по математике 2 класс «Начальная школа 21 века» Пояснительная записка Рабочая программа по математике составлена на основе: Федерального ...
  3. Рабочая программа по математике (13)

    Рабочая программа
    ... №2» г. Астрахани Пояснительная записка Данная рабочая программа по математике для 5 класса разработана в соответствии ... . Приложение 1 к рабочей программе по математике, 5 класс График выполнения практической части программы по математике в 5 классах ...
  4. Рабочая программа по математике (1)

    Рабочая программа
    Рабочая программа по математике 1 класс. «Начальная школа 21 века» Математика Пояснительная записка Рабочая программа составлена на основе Федеральных ...
  5. Рабочая программа по математике (5)

    Рабочая программа
    РАБОЧАЯ ПРОГРАММА ПО  МАТЕМАТИКЕ НА 2012-2013 УЧЕБНЫЙ ГОД 5 КЛАСС Пояснительная записка Рабочая программа учебного предмета «Математика ... понимания статистических утверждений. Содержание рабочей программы 1. Математический язык. Математические ...

Другие похожие документы..