Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Анкета'
Зеленоград, корп....полностью>>
'Обзор'
Вы изучаете английский язык в школе или вузе, занимаетесь с репетитором или изучаете иностранный язык самостоятельно? Вам необходимо подобрать учебные...полностью>>
'Документ'
Значение действий масс в политической жизни древней Греции неоднократно обсуждалось историками. Однако внимание уделялось прежде всего эллинистическом...полностью>>
'Документ'
Ответственность за мероприятия связанных с обеспечением безопасности проведения соревнований несет МБУ КГО с/к «Синегорец» в соответствии с законодате...полностью>>

Главная > Конспект лекций

Сохрани ссылку в одной из сетей:
Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Используя подход аналогичный примененному для расчета коэффициента поглощения свободными электронами в металле, можно показать, что

. (.)

Если учитывать взаимодействие электронов в зоне проводимости и дырок в валентной зоне с решеткой, а также влияние примесей и дефектов

. (.)

В случае очень высоких концентраций ионизованных примесных центров, коэффициент поглощения должен зависеть от длины волны, как ; при этой длине волны коэффициент поглощения должен быть пропорционален квадрату концентрации примесных центров.

В отличие от поглощения, описанного выше и характеризуемого монотонным возрастанием с длиной волны, в определенных случаях возможно существование сравнительно узких спектральных полос поглощения, также связанных с взаимодействием излучения с носителями тока. Наиболее изученным случаем селективного поглощения носителями тока является поглощение дырками в кристаллах Ge. Было установлено, что в области за краем основной полосы поглощения, вблизи 3,4 мкм и 4,7 мкм, а также при длинах волн, превышающих 10 мкм, имеют место полосы поглощения, интенсивность которого пропорциональна концентрации дырок.

В отличие от кристаллов Ge, несмотря на большое сходство в структуре валентных зон, в кристаллах Si селективного поглощения дырками практически не наблюдается. Исследование ИК-спектров поглощения некоторых из интерметаллических соединений, например GaSb и InAs, указывает на наличие селективного поглощения свободными носителями, по-видимому, так же, как и в Ge, связанного с переходами между ветвями сложной валентной зоны

При достаточно низких температурах электроны из зоны проводимости вымораживаются на примесные центры. При поглощении фотонов, обладающих энергией , эти электроны могут быть опять возбуждены (заброшены) в зону проводимости. По величине энергии ионизации примесные состояния условно разделяют на «глубокие» и «мелкие».

Обычно поглощение на примесях проявляется в виде широкого непрерывного спектра, простирающегося до края основной полосы поглощения. Охлаждая полупроводник до температуры жидкого гелия, спектр поглощения можно сузить в отдельные линии.

ИК-поглощение глубокими уровнями. Глубокими уровнями обычно называют те уровни, вероятность термической ионизации которых при комнатной температуре мала.

Существование примесных центров или дефектов структуры с глубокими уровнями часто определяет такие основные физические характеристики полупроводника, как скорость рекомбинации неравновесных носителей, спектральную область фотопроводимости, а также спектр люминесценции.

Естественно ожидать, что за длинноволновым краем полосы собственного поглощения может наблюдаться поглощение, связанное с фотоионизацией или возбуждением глубоких уровней. Такое поглощение действительно наблюдается в полупроводниках с широкой запрещенной полосой (CdS, ZnS), а также в кристаллах кремния, в которых путем облучения быстрыми электронами или нейтронами созданы структурные дефекты. Глубокие уровни часто соответствуют вторичной и т.д. ионизации примесного атома или дефекта. В наиболее изученных полупроводниках (германий и кремний) энергию ионизации большинства глубоких примесных уровней, обусловленных атомами Аu, Fe, Co и других элементов, определили не по данным оптического поглощения, а путем электрических измерений или по спектральной зависимости примесной фотопроводимости.

Поглощение света при возбуждении колебаний кристаллической решетки. Так же, как и при возбуждении колебаний с участием атомов примесей, поглощение света вследствие возбуждения колебаний кристаллической решетки не сопровождается фотоионизацией. Этот тип поглощения характерен для ионных кристаллов, каждый из которых имеет, обычно в далекой ИК-области, полосу интенсивного поглощения и несколько смещенный относительно нее максимум отражательной способности.

Интенсивность полос не зависит от типа и концентрации электрически активных примесей. Показано, что интенсивность поглощения в этих полосах пропорциональна среднему квадратичному смещению атомов при тепловом возбуждении. Для объяснения причины существования полос поглощения полагают, что тепловое движение атомов (или наличие структурных дефектов) деформирует распределение заряда в кристалле, создавая электрические диполи, с которыми может взаимодействовать падающее ИК-излучение.

.. Рекомбинация и захват электронов и дырок в полупроводниках

Анализ явлений захвата и рекомбинации носителей, связанных с локальными центрами и дефектами, удобно провести на основании схемы соответствующих электронных переходов, приведенной на рис. .. Переходы 1, 2 и 3 (рис. .а) соответствуют поглощению света: в основной полосе  1 и локализованными примесями  2, 3. В случае 1 возникает пара свободных носителей, в случае 2  свободный электрон и связанная (локализованная) дырка, в случае 3  свободная дырка и связанный электрон. Электронные переходы, соответствующие возникновению экситонов или возбужденных примесных центров, а также внутризонные переходы не указаны, так как они не сопровождаются появлением свободных носителей.

Возникшие в результате фотоионизации неравновесные электроны и дырки существуют до тех пор, пока они не будут захвачены примесными центрами. Этот процесс обычно является более вероятным, чем непосредственная рекомбинация или образование экситона. Центры, способные захватывать свободные носители (ловушки), разделяют на: центры прилипания (в случае, если захваченный носитель имеет большую вероятность обратного термического возбуждения в свободное состояние по сравнению с вероятностью рекомбинации на центре с носителем противоположного знака), и рекомбинационные центры (если наиболее вероятной для захваченного носителя является рекомбинация с носителем противоположного знака).

Вообще говоря, центр с энергетическим уровнем вблизи одной из зон обычно действует как центр прилипания, а центр с уровнем вблизи середины запрещенной полосы  как рекомбинационный центр. Различие между центрами прилипания и рекомбинациоиными центрами определяется соотношением вероятностей термического освобождения и рекомбинации.

Рис2115

а б в

Рис. .. Электронные переходы в полупроводнике с локальными центрами: а – фотоионизация, б – захват носителей, в – рекомбинация

Переходы 4 и 4 и 5 и 5 на рис. . б обозначают захват и термическое освобождение носителей; переход 6 соответствует захвату электрона рекомбинационным центром, а электронный переход 7  захвату дырки.

При одной температуре или уровне возбуждения центр может действовать в качестве центра прилипания, а при других условиях  в качестве центра рекомбинации.

На схеме рис. . в обозначены три основных электронных перехода, соответствующих рекомбинации: во первых, свободный электрон может непосредственно рекомбинировать со свободной дыркой (переход 8). Переходы этого типа обычно являются излучательными, т.е. освобождающаяся энергия излучается в виде фотона с энергией, примерно равной ширине запрещенной зоны. Вероятность непосредственной рекомбинации обычно очень мала и не определяет средних значений времени жизни неравновесных носителей.

Более вероятным процессам рекомбинации соответствуют переходы типа 9, т.е. захват электрона центром, вблизи которого находится связанная с ним дырка, или типа 10, т.е. захват дырки центром, вблизи которого локализован электрон. Эти переходы также могут быть излучательиыми.

Таким образом, возвращение электронной системы кристалла из возбужденного состояния в равновесное может сопровождаться люминесценцией (которую называют также «рекомбинационным излучением» полупроводников). Вероятность, т.е. «скорость» рекомбинации в значительной мере определяется тем, каким способом преобразуется энергия возбужденных (неравновесных) носителей. Возможны различные процессы преобразования или рассеяния энергии неравновесных носителей, в том числе: испускание света (фотонов); передача энергии возбуждения кристаллической решетке, т.е. испускание фононов; передача избытка энергии двух рекомбинирующих носителей третьему носителю, т.е. процесс, обратный ударной ионизации. Этот процесс называют «ударной рекомбинацией» или эффектом Оже.

Разумеется, возможны и комбинации двух процессов передачи энергии, например, испускание фотона и одновременное возбуждение фононов.

В случае, когда возникает несколько фононов, они могут появляться либо одновременно, либо последовательно (каскадом) по мере того, как захватываемый локальным центром носитель приближается к центру, а затем движется вблизи центра, то испуская, то поглощая фононы до тех пор, пока не произойдет захват или пока носитель не удалится вновь от центра.

Рекомбинация и захват носителей центрами на поверхности полупроводников. Поверхность полупроводника представляет собой неизбежное макроскопическое нарушение периодичности кристаллической решетки. На электронные процессы на поверхности и вблизи поверхности полупроводника оказывают влияние не только сами центры захвата и рекомбинации, но и состояние области пространственного заряда, которая обусловлена существованием поверхностных локальных центров. Такие центры могут быть связаны как непосредственно с обрывом периодичности (уровни Тамма), так и с адсорбированными атомами или молекулами.

Влияние примесей на скорость рекомбинации носителей тока. Наиболее эффективно повышают темп рекомбинации носителей тока примеси, которые создают в запрещенной зоне уровни глубокого залегания. Такие примеси способны снижать время жизни неосновных носителей тока до 107 – 109 с. Поскольку скорость рекомбинации неосновных носителей ограничивается обычно эффективностью их захвата, то определяющее значение в этом процессе имеют те уровни (с наибольшим сечением захвата), концентрация которых максимальна.

В Ge и р-Si акцепторные примеси являются обычно центрами рекомбинации электронов и дырок, поскольку в большинстве случаев сечение захвата ими основных носителей намного превышает значение этого параметра для неосновных носителей.

Рекомбинационный захват носителей локальными центрами. В подавляющем большинстве случаев время жизни неравновесных носителей в полупроводниках определяется не прямой рекомбинацией, а наличием дефектов, в первую очередь  локальных центров в кристаллах.

В отличие от прямой рекомбинации, скорость которой определяется концентрациями носителей и одной константой (вероятностью), процесс рекомбинации на локальных центрах определяется также степенью их заполнения. Степень заполнения связана с концентрацией свободных носителей через вероятность (эффективное поперечное сечение) захвата электрона незанятым центром и эффективное сечение захвата дырки центром, на котором локализован электрон.

В таблице приведены значения и для элементов IV группы системы Менделеева и некоторых их интерметаллических соединений типа А3В5.

.. Процессы передачи энергии в поглощающих полупроводниках

При анализе теплового действия лазерного излучения на полупроводники выделяют следующие механизмы поглощения света:

1) Собственное (межзонное) поглощение света (). В этом случае один из валентных электронов становится свободным, одновременно образуется дырка (образуется электронно-дырочная пара). Процесс межзонного поглощения это внутренний фотоэффект, при этом коэффициент поглощения составляет 103-105 см-1.

2) Внутризонное поглощение (поглощение свободными носителями – электронами и дырками). По своей сути аналогично поглощению свободными электронами в металле, отличие лишь в концентрации свободных носителей (~1014-1017 см-3). Коэффициент этого поглощения , .

3) Примесное поглощение – участвуют энергетические состояния в запрещенной зоне (), 10 см-1.

4) Решеточное (остаточное) поглощение. Оно имеет место тогда, когда свет взаимодействует непосредственно с ионами полупроводника. При этом электронная подсистема остается незадействованной. Иначе, это взаимодействие фотона с фононом (оно квантовано, но линии довольно широкие); 103 см-1 (в резонансе).

Таблица . Значения и для некоторых полупроводников.

n

n

Алмаз

2,417

5,9

InSb

3,988 *)

15,9

Si

3,446 *)

11,8

GaP

2,97 **)

8,4

4,006 *)

16,0

GaAs

3,348 *)

11,1

InP

3,37 **)

10,9

GaSb

3,748 *)

14,0

InAs

3,428 *)

11,7

AlSb

3,188 *)

10,1

* метод призмы, ** данные об отражении.

В зависимости от того, с помощью какого механизма и в каком виде высвобождается энергия возбужденного носителя, можно выделить основные виды рекомбинации.

1. Излучательная рекомбинация – результатом которой является возникновение световых квантов. Вероятность излучательной рекомбинации может быть рассчитана как квантовомеханически (для водородоподобных и для глубоких уравнений), так и на основе применения принципа детального равновесия – для центров с различными сечениями. Известна зависимость излучательной рекомбинации от сильного электрического поля, от слабых и сильных световых потоков, а также от упругой деформации.

2. Безызлучательная рекомбинация - выделяющаяся при переходе неравновесного носителя на локальный центр энергия переходит в энергию тепловых колебаний решетки. Вероятность безызлучательной рекомбинации сильно зависит от глубины залегания уровня. В случае если центр глубокого залегания имеет значительное число возбужденных состояний, захваченный носитель может «рассеять» свою энергию, опускаясь последовательно «по лестнице» возбужденных состояний.

3. Ударная рекомбинация характеризуется передачей энергии, высвобождающейся при рекомбинации другому носителю, который рассеивает ее впоследствии при взаимодействии с колебаниями решетки. Ударная рекомбинация представляет собой процесс, обратный процессу ударной ионизации. Процесс ударной рекомбинации может играть существенную роль в Ge, причем сечения захвата в этом случае должны быть пропорциональными концентрации носителей тока. Независимость сечения захвата от концентрации показывает, что, по крайней мере, до концентраций 1017см– 3 ударная рекомбинация не является доминирующей, но становится ею при высоких уровнях возбуждения.

Рассмотрим собственное поглощение, . Начальная стадия процесса воздействия связана с переходом электронов валентной зоны в зону проводимости (внутренний фотоэффект) (см. рис. .). При межзонном поглощении энергия поглощенного кванта в кинетическую практически не превращается, а становится потенциальной энергией. В тепло за счет столкновений может перейти энергия (время перехода 10-13 с). Потенциальная энергия неравновесных электронов в тепло просто так не переводится. Рост концентрации неравновесных электронов ограничивается процессами рекомбинации, а также амбиполярной диффузией, обусловленной градиентом концентрации неравновесных носителей (электронов и дырок) в зоне воздействия лазерного излучения.

Рис2116

Рис. .. Собственное поглощение .

Процессы безызлучательной рекомбинации переводят в тепло . Время безызлучательной рекомбинации ~ 10-10 – 10-2 с (диапазон может быть и шире). Междузонная излучательная рекомбинация переводит потенциальную энергию неравновесных носителей в кванты излучения, которые либо покидают полупроводник, либо вновь поглощаются в нем.

Таким образом, в полупроводниках имеются быстрые процессы перевода излучения в тепло (тепло) и медленные процессы ( тепло).

Как было сказано выше, поглощение излучения свободными электронами проводимости в полупроводниках происходит при (), т.е. за краем полосы собственного поглощения. Как правило, оно незначительно, поскольку мала концентрация свободных носителей. Воздействие лазерного излучения на полупроводник приводит к появлению неравновесных свободных электронов, которые существуют пока идет процесс фотовозбуждения. Концентрация этих носителей может достигать 10 см-3 и более.



Похожие документы:

  1. Программа вступительных испытаний (междисциплинарного экзамена) для поступающих в магистратуру по направлению 12. 04. 05 «Лазерная техника и лазерные технологии» Программа утверждена на заседании кафедры см

    Программа
    ... Г.Д. «Взаимодействие лазерного излучения с веществом (силовая оптика)». Часть I. Поглощение лазерного излучения в веществе / Под общей редакцией В.П. Вейко. - СПб.: ... Вейко В.П., Петров А.А. Опорный конспект лекций по курсу "Лазерные технологии ...

Другие похожие документы..