Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
Приглашаем принять участие во всероссийской научно-практической конференции ученых, руководителей сферы образования, учителей, аспирантов и студентов:...полностью>>
'Документ'
Развивающие – обеспечить развитие аналитических умений, выделения главного, существенного в изучаемом материале, применения ранее полученных знаний дл...полностью>>
'Документ'
врач-офтальмолог офтальмологического кабинета консультативно-диагностической поликлиники федерального ГКУ «1602 военный клинический госпиталь» Министе...полностью>>
'Учебник'
Рекомендовано УМО по образованию в области финансов, учета и мировой экономики в качестве учебника для студентов, обучающихся по специальностям "Финан...полностью>>

Главная > Документ

Сохрани ссылку в одной из сетей:
Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Рис. 1. Полигон частот результатов

Для построения гистограммы по оси абсцисс откладываются границы ин­тервалов и на них восстанавливаются прямоугольники до уровня частот, соответ­ствующих интервалам, отложенных по оси ординат (рис. 2).

Рис. 2. Гистограмма распределения результатов

Если нанести на гистограмму пунктирной линией полигон распределения частот, то мы получим первоначальное представление о дифференциальной функ­ции распределения.

Таким образом, теоретическим аналогом гистограммы является плот­ность распределения вероятностей, или дифференциальная функция распре­деления (рис. 3).

Рис. 3. Плотность распределения вероятностей

Иначе говоря, гистограмма является экспериментальным аналогом плотности распределения вероятностей.

Площадь гистограммы равна сумме всех частот, т. е. объёму выборки, или сумме частостей, т. е. единице.

Полигон накопленных частот показывает прирост показателей от интер­вала к интервалу, поэтому ее ещё называют кривой сумм или кумулятой. Для по­строения полигона накопленных частот по оси абсцисс откладываются верхние границы интервалов, а по оси ординат – соответствующие им накопленные час­тоты (или накопленные частости) (рис. 4).

накопленная

частота

Рис. 4. Полигон накопленных частот результатов

Теоретическим аналогом полигона накопленных частот результатов яв­ляется функция распределения, или интегральная функция распределения (рис. 5).

Рис. 5. Функция распределения

Иначе говоря, полигон накопленных частот результатов является экс­периментальным аналогом функции распределения.

Таким образом, графическое представление результатов измерений выяв­ляет закономерности их распределения и позволяет правильно выбрать последую­щие статистические характеристики для дальнейшего анализа полученных экспе­риментальных данных.

Однако прежде чем перейти к дальнейшим расчётам, напомним о нормаль­ном законе распределения.

Нормальное распределение

Большинство экспериментальных исследований не только в области физиче­ской культуры и спорта, но и в биологии, медицине и др. связано с измерениями, результаты которых могут принимать любые значения в заданном интервале, и описываются моделью непрерывных случайных величин, которые подчинены определённому закону распределения.

Среди всех непрерывных законов распределения вероятностей особое место занимает нормальное распределение, или распределение Гаусса, как наиболее часто встречающийся вид распределения.

Закон нормального распределения выражается следующей формулой:

,

где µ - математическое ожидание;

(основание натурального логарифма);

- называется нормированным отклонением.

Поэтому этот закон называется законом нормального распределения, а гра­фик функции f(x) называют нормальной кривой, или кривой Гаусса (рис.6).

Рис. 6. Кривая нормального распределения

Теорема. Математическое ожидание случайной величины Х приближённо равно среднему арифметическому всех её значений (при достаточно большом числе испытаний).

Как видно из рисунка 6, график нормальной кривой представляет собой колоколообразную фигуру, симметричную относительно вертикальной прямой , и асимптотически приближающуюся к оси абсцисс при .

Главная особенность нормального закона состоит в том, что он является пре­дельным законом, к которому приближаются другие законы распределения. При достаточно многочисленной совокупности нормальное распределение прояв­ляется и в эмпирическом распределении.

Определение. Совокупность всех возможных значений случайной величины и соответствующих им вероятностей образует так называемое теоретическое распределение.

Определение. Совокупность фактических значений случайной величины, полученных в результате наблюдений, с соответствующими частотами (или частостями) образуют эмпирическое распределение.

Рассмотрим некоторые свойства нормального распределения.

1. График нормального распределения определен на всей оси ОХ, т. е. каж­дому значению х соответствует вполне определённое значение функции.

2. При всех значениях х (как положительных, так и отрицательных) функция принимает положительные значения, т. е. нормальная кривая расположена над осью ОХ.

3. Предел функции при неограниченном возрастании х равен нулю

.

Поскольку функция стремится к 0 при , то ось абсцисс является асимптотой графика этой функции.

4. Функция в точке имеет максимум, равный:

.

5. График кривой f(x) симметричен относительно прямой, проходящей через точку х = μ.

Отсюда следует равенство для нормально распределённой величины моды, медианы и математического ожидания.

6. Коэффициенты асимметрии и эксцесса нормального распределения равны 0:

= 0;

= 0.

Отсюда следует важность вычисления этих коэффициентов для эмпирических рядов распределения, т. к. они характеризуют скошенность и кру­тость данного ряда по сравнению с нормальным.

7. Изменение значений параметра (при неизменном ) не влияет на форму нормальной кривой; кривая сдвигается вдоль оси Ox вправо, если возрас­тает, и влево, если убывает.

С изменением же значений параметра форма нормальной кривой изменя­ется. Максимальная ордината графика функции убывает с возрастанием значения (кривая «сжимается» к оси Ox) и возрастает с убыванием значения (кривая «растягивается» в положительном направлении оси Oy).

На рис. 7. изображены три нормальные кривые при одном и том же значении и различных значениях .

Рис. 7. Нормальные кривые при равных и разных

Аналитический анализ.

Основные статистические характеристики ряда измерений

К основным статистическим характеристикам ряда измерений (вариацион­ного ряда) относятся характеристики положения (средние характе­ристики, или центральная тенденция выборки); характеристики рассеяния (ва­риации, или колеблемости) и характеристики формы распределения.

К характеристикам положения относятся среднее арифметическое значе­ние (среднее значение), мода и медиана.

К характеристикам рассеяния (вариации, или колеблемости) относятся: размах вариации, дисперсия, среднее квадратическое (стандартное) отклонение, ошибка средней арифметической (ошибка средней), коэффициент вариации и др.

К характеристикам формы относятся коэффициент асимметрии, мера ско­шенности и эксцесс.

Далее приводятся формулы для расчёта основных статистических характеристик, причём предлагаются расчётные формулы как для несгруппированных данных, так и для данных, сгруппированных в интервалы.

Характеристики положения

1. Среднее арифметическое значение

Среднее арифметическое значение – одна из основных характеристик вы­борки.

Она, как и другие числовые характеристики выборки, может вычисляться как по необработанным первичным данным, так и по результатам группировки этих данных.

Точность вычисления по необработанным данным выше, но процесс вычисления оказывается трудоёмким при большом объёме выборки.

Для несгруппированных данных среднее арифметическое определяется по формуле:

,

где n- объем выборки, х1, х2, ... хn - результаты измерений.

Для сгруппированных данных:

,

где n- объем выборки, k – число интервалов группировки, ni – частоты интервалов, xi – срединные значения интервалов.

2. Мода

Определение 1. Мода - наиболее часто встречающаяся величина в данных вы­борки. Обозначается Мо и определяется по формуле:

,

где - нижняя граница модального интервала, - ширина интервала группи­ровки, - частота модального интервала, - частота интервала, предшествую­щего модальному, - частота интервала, последующего за модаль­ным.

Определение 2. Модой Мо дискретной случайной величины называется наиболее вероятное её значение.

Геометрически моду можно интерпретировать как абсциссу точки максимума кривой распределения. Бывают двухмодальные и многомодальные распределения. Встречаются распределения, которые имеют минимум, но не имеют максимума. Такие распределения называются антимодальными.

Определение. Модальным интервалом называется интервал группировки с наибольшей частотой.

3. Медиана

Определение. Медиана - результат измерения, который находится в сере­дине ранжированного ряда, иначе говоря, медианой называется значение признака Х, когда одна половина значений экспериментальных данных меньше её, а вторая половина – больше, обозначается Ме.

Когда объем выборки n - четное число, т. е. результатов измерений четное количество, то для определения медианы рассчитывается среднее значение двух показателей выборки, находящихся в середине ранжированного ряда.

Для данных, сгруппированных в интервалы, медиану определяют по фор­муле:

,

где - нижняя граница медианного интервала; ширина интервала группи­ровки, 0,5n – половина объёма выборки, - частота медианного интервала, - накопленная частота интервала, предшествующего медианному.

Определение. Медианным интервалом называется тот интервал, в котором накопленная частота впервые окажется больше половины объёма выборки (n/2) или накопленная частость окажется больше 0,5.

Численные значения среднего, моды и медианы отличаются, когда имеет место несимметричная форма эмпирического распределения.

Характеристики рассеяния результатов измерений

Для математико-статистического анализа результатов выборки знать только характеристики положения недостаточно. Одна и та же величина среднего значе­ния может характеризовать совершенно различные выборки.

Поэтому кроме них в статистике рассматривают также характеристики рассеяния (вариации, или колеблемости) результатов.

1. Размах вариации

Определение. Размахом вариации называется разница между наибольшим и наименьшим результатами выборки, обозначается R и определяется

R=Xmax - Xmin .

Информативность этого показателя невелика, хотя при малых объёмах вы­борки по размаху легко оценить разницу между лучшим и худшим результатами спортсменов.

2. Дисперсия

Определение. Дисперсией называется средний квадрат отклонения значений признака от среднего арифметического.

Для несгруппированных данных дисперсия определяется по формуле

2 =, (1)

где Хi – значение признака, - среднее арифметическое.

Для данных, сгруппированных в интервалы, дисперсия определяется по формуле

,

где хi – среднее значение i интервала группировки, ni – частоты интервалов.

Для упрощения расчётов и во избежание погрешностей вычисления при округ­лении результатов (особенно при увеличении объёма выборки) используются также другие формулы для определения дисперсии. Если среднее арифметическое уже вычислено, то для несгруппированных данных используется следующая фор­мула:

2 =,

для сгруппированных данных:

.

Эти формулы получаются из предыдущих раскрытием квадрата разности под знаком суммы.

В тех случаях, когда среднее арифметическое и дисперсия вычисляются од­новременно, используются формулы:

для несгруппированных данных:

2 =,

для сгруппированных данных:

.

3. Среднее квадратическое (стандартное) отклонение

Определение. Среднее квадратическое (стандартное) отклонение характе­ризует степень отклонения результатов от среднего значения в абсолютных единицах, т. к. в отличие от дисперсии имеет те же единицы измерения, что и результаты измерения. Иначе говоря, стандартное отклонение показывает плотность распределения результатов в группе около среднего значения, или однородность группы.

Для несгруппированных данных стандартное отклонение можно определить по формулам

=,

= или  =.

Для данных, сгруппированных в интервалы, стандартное отклонение определяется по формулам:

,

или .

4. Ошибка средней арифметической (ошибка средней)

Ошибка средней арифметической характеризует колеблемость средней и вычисляется по формуле:

.

Как видно из формулы, с увеличением объёма выборки ошибка средней уменьшается пропорционально корню квадратному из объёма выборки.



Похожие документы:

  1. Подготовки учебно-методических материалов кафедрами фгбоу впо «ргуфксмиТ» в 2014 -2015 учебном году

    Методическое пособие
    ... материалы по выполнению расчётно-графических работ. Для ... работы с молодежью Маркарян В.С., Груев Д.И. Февраль 2015 5 Методические рекомендации для самостоятельного освоения дисциплины Математика ... Методические рекомендации По курсу НИР «Методическая ...

Другие похожие документы..