Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
Работа состоит из 8 заданий. К каждому заданию А1 – А5 приведены 4 варианта ответа, из которых только один верный . При выполнении этих заданий надо у...полностью>>
'Рабочая программа'
Рабочая программа по литературному чтению создана на основе Примерной программы начального общего образования по русскому языку и Федерального компоне...полностью>>
'Документ'
прошу предоставить субсидию для компенсации части затрат по оплате стоимости жилого помещения, приобретенного в многоквартирном (в том числе малоэтажн...полностью>>
'Документ'
э.н., доцент, 08.00.1 – Бухгалтерский учет, аудит, статистика, Доктор PhD по финансам Университет Нархоз, доктор PhD, доцент каф....полностью>>

Главная > Документ

Сохрани ссылку в одной из сетей:
Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Нулевое поколение (1492-1945)

Для полноты картины упомянем два события, произошедшие до нашей эры: пер­вые счеты — абак, изобретенные в древнем Вавилоне за 3000 лет до н. э., и их более «современный» вариант с косточками на проволоке, появившийся в Китае при­мерно за 500 лет так же до н. э.

«Механическая» эра (нулевое поколение) в эволюции ВТ связана с механичес­кими, а позже — электромеханическими вычислительными устройствами. Основ­ным элементом механических устройств было зубчатое колесо. Начиная с XX века роль базового элемента переходит к электромеханическому реле.

Первое поколение (1937-1953)

На роль первой в истории электронной вычислительной машины в разные периоды претендовало несколько разработок. Общим у них было использование схем на базе электронно-вакуумных ламп вместо электромеханических реле. Предполага­лось, что электронные ключи будут значительно надежнее, поскольку в них отсут­ствуют движущиеся части, однако технология того времени была настолько несо­вершенной, что по надежности электронные лампы оказались ненамного лучше, чем реле. Однако у электронных компонентов имелось одно важное преимущество: выполненные на них ключи могли переключаться примерно в тысячу раз быстрее своих электромеханических аналогов.

Второе поколение(1954-1962)

Второе поколение характеризуется рядом достижений в элементной базе, струк­туре и программном обеспечении. Принято считать, что поводом для выделения нового поколения ВМ стали технологические изменения, и, главным образом, пе­реход от электронных ламп к полупроводниковым диодам и транзисторам со вре­менем переключения порядка 0,3 мс.

Третье поколение(1963-1972)

Третье поколение ознаменовалось резким увеличением вычислительной мощно­сти ВМ, ставшим следствием больших успехов в области архитектуры, технологии и программного обеспечения. Основные технологические достижения связаны с переходом от дискретных полупроводниковых элементов к интегральным микро­схемам и началом применения полупроводниковых запоминающих устройств, начинающих вытеснять ЗУ на магнитных сердечниках. Существенные изменения произошли и в архитектуре ВМ. Это, прежде всего, микропрограммирование как эффективная техника построения устройств управления сложных процессоров, а также наступление эры конвейеризации и параллельной обработки. В области программного обеспечения определяющими вехами стали первые операционные системы и реализация режима разделения времени.

Четвертое поколение (1972-1984)

Отсчет четвертого поколения обычно ведут с перехода на интегральные микро­схемы большой (large-scale integration, LSI) и сверхбольшой (very large-scale inte­gration, VLSI) степени интеграции. К первым относят схемы, содержащие около 1000 транзисторов на кристалле, в то время как число транзисторов на одном кри­сталле VLSI имеет порядок 100 000. При таких уровнях интеграции стало возмож­ным уместить в одну микросхему не только центральный процессор, но и вычис­лительную машину (ЦП, основную память и систему ввода/вывода).

Пятое поколение(1984-1990)

Главным поводом для выделения вычислительных систем второй половины 80-х го­дов в самостоятельное поколение стало стремительное развитие ВС с сотнями процессоров, ставшее побудительным мотивом для прогресса в области параллель­ных вычислений. Ранее параллелизм вычислений выражался лишь в виде конвейе­ризации, векторной обработки и распределения работы между небольшим числом процессоров. Вычислительные системы пятого поколения обеспечивают такое рас­пределение задач по множеству процессоров, при котором каждый из процес­соров может выполнять задачу отдельного пользователя.

Шестое поколение (1990-)

На ранних стадиях эволюции вычислительных средств смена поколений ассоци­ировалась с революционными технологическими прорывами. Каждое из первых четырех поколений имело четко выраженные отличительные признаки и вполне определенные хронологические рамки. Последующее деление на поколения уже не столь очевидно и может быть понятно лишь при ретроспективном взгляде на развитие вычислительной техники. Пятое и шестое поколения в эволюции ВТ — это отражение нового качества, возникшего в результате последовательного накопления частных достижений, главным образом в архитектуре вычислительных.

Процессоры и шины

Организация шин

Совокупность трактов, объединяющих между собой основные устройства ВМ (центральный процессор, память и модули ввода/вывода), образует структуру взаимосвязей вычислительной машины. Структура взаимосвязей должна обеспечивать обмен информацией между:

•   центральным процессором и памятью;

•   центральным процессором и модулями ввода/вывода;

•   памятью и модулями ввода/вывода.

Информационные потоки, характерные для основных устройств ВМ, показаны на рис


Рис - Информационные потоки в вычислительной машине

Шина – это совокупность трактов объединяющих между собой основные устройства ВМ (ЦП, память, УВВ). Шина обеспечивает структуру взаимосвязи ВМ.

С развитием вычислительной техники менялась и структура взаимосвязей ус­тройств ВМ. На начальной стадии преобладали непосредственные связи между взаимодействующими устройствами ВМ.

Рис. - Эволюция структур взаимосвязей (ЦП — центральный процессор, ПАМ — модуль основной памяти, МВВ — модуль ввода/вывода)

С появлением мини-ЭВМ, и осо­бенно первых микро-ЭВМ, все более популярной становится схема с одной общей шиной. Последовавший за этим быстрый рост производительности практически всех устройств ВМ привел к неспособности единственной шины справиться с возросшим трафиком, и ей на смену приходят структуры взаимосвязей на базе нескольких шин. Дальнейшие перспективы повышения производительности вы­числений связаны не столько с однопроцессорными машинами, сколько с много­процессорными вычислительными системами.

Основные пути повышения быстродействия ЭВМ:

1. Сумматоры (параллельные)

Сумматором – называется комбинационное логическое устройство, предназначенное для выполнения операции арифметического сложения чисел в двоичном коде.

Таблица истинности для сложения одноразрядных двоичных кодов.

S реализовать через ИЛИ нельзя, т.к. существует отличие в четвертой строке.
Результат сложения не может быть представлен двоичным кодом, разрядность которого равна разряду.

Трудность в достижении быстродействия связана с тем, что процесс распространения переносов носит последовательный характер. Следовательно, задержка в распространении переносов увеличивается при получении последнего переноса. Частичное решение проблемы – построение сумматоров с групповым переносом

2. Периферийные процессоры и шины

Архитектура периферийной системы показана на Рисунке. Цель такой конфигурации состоит в повышении общей производительности сети за счет перераспределения выполняемых процессов между центральным и периферийными процессорами.

У каждого из периферийных процессоров нет в распоряжении других локальных периферийных устройств, кроме тех, которые ему нужны для связи с центральным процессором. Файловая система и все устройства находятся в распоряжении центрального процессора. Предположим, что все пользовательские процессы исполняются на периферийном процессоре и между периферийными процессорами не перемещаются; будучи однажды переданы процессору, они пребывают на нем до момента завершения. Периферийный процессор содержит облегченный вариант операционной системы, предназначенный для обработки локальных обращений к системе, управления прерываниями, распределения памяти, работы с сетевыми протоколами и с драйвером устройства связи с центральным процессором.

При инициализации системы на центральном процессоре ядро по линиям связи загружает на каждом из периферийных процессоров локальную операционную систему. Любой выполняемый на периферии процесс связан с процессом-спутником, принадлежащим центральному процессору (см. [Birrell 84]); когда процесс, протекающий на периферийном процессоре, вызывает системную функцию, которая нуждается в услугах исключительно центрального процессора, периферийный процесс связывается со своим спутником и запрос поступает на обработку на центральный процессор. Процесс-спутник исполняет системную функцию и посылает результаты обратно на периферийный процессор. Взаимоотношения периферийного процесса со своим спутником похожи на отношения клиента и сервера: периферийный процесс выступает клиентом своего спутника, поддерживающего функции работы с файловой системой. При этом удаленный процесс-сервер имеет только одного клиента.

Когда периферийный процесс вызывает системную функцию, которую можно обработать локально, ядру нет надобности посылать запрос процессу-спутнику. Так, например, в целях получения дополнительной памяти процесс может вызвать для локального исполнения функцию sbrk. Однако, если требуются услуги центрального процессора, например, чтобы открыть файл, ядро кодирует информацию о передаваемых вызванной функции параметрах и условиях выполнения процесса в некое сообщение, посылаемое процессу-спутнику:

Сообщение включает в себя признак, из которого следует, что системная функция выполняется процессом-спутником от имени клиента, передаваемые функции параметры и данные о среде выполнения процесса (например, пользовательский и групповой коды идентификации), которые для разных функций различны. Оставшаяся часть сообщения представляет собой данные переменной длины (например, составное имя файла или данные, предназначенные для записи функцией write).

3.Многопрограммный режим работы

Многопрограммный режим работы ЭВМ позволяет одновременно об­служивать несколько программ пользователей. Реализация режима требует соблюдения следующих непременных условий:

• независимости подготовки заданий пользователями;

• разделения ресурсов ЭВМ в пространстве и времени;

• автоматического управления вычислениями.

Независимость подготовки заданий пользователями обеспечивается раз­витыми средствами САП. Используя имеющиеся языки программирования, пользователи не должны учитывать ситуации, в которых может произойти одновременное их обращение к одним и тем же ресурсам ЭВМ. Они могут использовать даже одинаковые идентификаторы, обращаться к одним и тем же библиотекам программ и массивам данных, задействовать одни и те же устройства и т.д. Очереди к общим ресурсам должны обслуживаться сред­ствами ОС, не создавая взаимных помех пользователям.

Разделение ресурсов ЭВМ между программами пользователей обеспечи­вается аппаратно-программными средствами системы. Программы управле­ния заданиями ОС определяют виды требуемых ресурсов в заданиях пользо­вателей и регламентируют их использование. Перспективное планирование при этом отсутствует, так как заранее определить динамику последующих вычислений практически невозможно. Отдельные виды ресурсов, например области оперативной и внешней памяти, допускают одновременное их ис­пользование программами пользователей. В этом случае пространство адре­сов памяти разбивается на непересекающиеся зоны или разделы. "Охрану границ" этих зон обеспечивают схемы защиты памяти - аппаратурные и про­граммные средства ЭВМ.

Некоторые виды ресурсов допускают только последовательное их исполь­зование программами пользователей, например, в однопроцессорной ЭВМ время работы единственного процессора является неразделяемым ресурсом. Его использование предполагает упорядочение потока заявок и поочередное его использование программами. В современных ЭВМ упорядочение потока заявок обеспечивается на основе их приоритетов, где приоритет - некоторая априорная характеристика заявки, определяющая ее место в очереди на об­служивание. Формирование очередей обеспечивают программные компоненты ОС. Обслуживание очередей заявок выполняется с использованием системы прерываний и приоритетов. Последняя выделяет из группы одновременно поступающих заявок одну, наиболее приоритетную.

Автоматическое управление вычислительным процессом в многопрог­раммном режиме выполняется центральной программой управления задача­ми. Сущность управления сводится к управлению ресурсами. При этом ОС составляет таблицы управления, выделяет ресурсы, запускает их в работу и корректирует таблицы.

Различные формы многопрограммных (мультипрограммных) режимов работы различаются в основном значимостью различного рода ресурсов и правилами перехода от обслуживания одной программы пользователя к другой. Эти правила отличаются условиями прерывания текущей программы и услови­ями выбора новой программы из очереди, которой передается управление.

Различают следующие виды многопрограммной работы: классическое мультипрограммирование, режим разделения времени, режим реального вре­мени и целый ряд производных от них.

4.Внедрение в процессор нескольких АЛУ

По своим функциям АЛУ является операционным блоком, выполняющим микрооперации (МО), обеспечивающие прием из других устройств (например, памяти) операндов, их преобразование и выдачу результатов преобразования в другие устройства. Каждая МО реализуется физическим управляющим сигналом (УС). Генерируемая устройством управления последовательность УС определяется кодом операции команды.

В зависимости от кодов, используемых для представления операндов, АЛУ делятся на:

1)Последовательные

2)Параллельные.

В последовательных АЛУ операнды представляются в последовательном коде, а операции производятся последовательно во времени над их отдельными разрядами.

В параллельных АЛУ операнды представлены параллельными кодами и операции совершаются одновременно над всеми разрядами операндов.

АЛУ последовательного действия в настоящее время практически не применяются из-за их низкого быстродействия.

По способу представления чисел различают АЛУ:

• для чисел с фиксированной точкой;

• для чисел с плавающей точкой;

• для десятичных чисел.

По характеру использования элементов и узлов АЛУ делятся на:

- блочные;

- многофункциональные.

В блочном АЛУ операции над числами с фиксированной и плавающей запятой, десятичными числами и алфавитно-цифровыми полями выполняются в отдельных блоках, при этом повышается скорость работы, так как блоки могут параллельно выполнять соответствующие операции, но значительно возрастают затраты оборудования. В многофункциональных АЛУ операции над всеми формами представления чисел выполняются одними и теме же схемами, которые коммутируются нужным образом в зависимости от требуемого режима работы.

Система обработки данных (СОД) – совокупность технических средств ПО, предназначенных для обработки данных.

По способу построения СОД выделяют:

1.Одномашинные СОД. Исторически первыми и до сих пор широко распространенными являются одномашинные СОД, построенные на базе единственной ЭВМ с традиционной однопроцессорной структурой. К настоящему времени накоплен значительный опыт проектирования к эксплуатации таких СОД, и поэтому создание, их, включая разработку программного обеспечения, не вызывает принципиальных трудностей. Однако производительность и надежность существующего парка ЭВМ оказывается удовлетворительной лишь для ограниченного применения, когда требуется относительно невысокая (до нескольких миллионов операций в секунду) производительность и допускается простой системы в течение нескольких часов из-за отказов оборудования. Повышение производительности и надежности ЭВМ обеспечивается в основном за счет совершенствования элементно-технологической базы. Достигнутое к настоящему времени быстродействие электронных схем приближается к физическому пределу, и производительность ЭВМ на уровне десяти миллионов операций в секунду можно рассматривать как максимальную возможную. При любом уровне технологии нельзя обеспечить абсолютную надежность элементной базы, и поэтому нельзя для одномашинных СОД исключить возможность потери работоспособности. Таким образом, одномашинные СОД лишь частично удовлетворяют потребность в автоматизации обработки данных.

2.Вычислительные комплексы. Начиная с 60-х годов для повышения надежности и производительности СОД, несколько ЭВМ связывались между собой, образуя многомашинный вычислительный комплекс.

В ранних многомашинных комплексах связь между ЭВМ обеспечивалась через общие внешние запоминающие устройства – накопители на магнитных дисках (НМД) или магнитных лентах (НМЛ) (рис, а), т.е. за счет доступа к общим наборам данных. Такая связь называется косвенной и оказывается эффективной только в том случае, когда ЭВМ взаимодействуют достаточно редко, например, при отказе одной из ЭВМ или в моменты начала и окончания обработки данных. Более оперативное взаимодействие ЭВМ достигается за счет прямой связи через адаптер, обеспечивающий обмен данными между каналами ввода – вывода ЧКВВ) двух ЭВМ (рис. 1.1, б) и передачу сигналов прерывания. За счет этого создаются хорошие условия для координации процессов обработки данных и повышается оперативность обмена данными, что позволяет вести параллельно процессы обработки и существенно увеличивать производительность СОД. В настоящее время многомашинные вычислительные комплексы широко используются для повышения надежности и производительности СОД.

Рис - Многомашинный вычислительный комплекс с косвенной (а) и прямой (б) связью между ЭВМ

В многомашинных вычислительных комплексах взаимодействие процессов обработки данных обеспечивается только за счет обмена сигналами прерывания и передачи данных через адаптеры канал – канал или общие внешние запоминающие устройства. Лучшие условия для взаимодействия процессов – когда все процессоры имеют доступ ко всему объему данных, хранимых в оперативных запоминающих устройствах (ОЗУ), и могут взаимодействовать со всеми периферийными устройствами комплекса. Вычислительный комплекс, содержащий несколько процессоров с общей оперативной памятью и периферийными устройствами, называется многопроцессорным. Принцип построения таких комплексов иллюстрируется рис. 1.2. Процессоры, модули оперативной памяти (МП) и каналы ввода–вывода, к которым подключены периферийные устройства (ПУ), объединяются в единый комплекс с помощью средств коммутации, обеспечивающих доступ каждого процессора к любому модулю оперативной памяти и каналу ввода–вывода, а также возможность передачи данных между последними. В многопроцессорном комплексе отказы отдельных устройств влияют на работоспособность СОД в меньшей степени, чем в многомашинном, т.е. многопроцессорные комплексы обладают большей устойчивостью к отказам. Каждый процессор имеет непосредственный доступ ко всем данным, хранимым в общей оперативной памяти, и к периферийным устройствам, что позволяет параллельно обрабатывать не только независимые задачи, на и блоки одной задачи.



Похожие документы:

  1. Организация однопроцессорных ЭВМ 2 > общие вопросы истории развития и построения ЭВМ 2

    Документ
    ... с машиной, вопросы логической организации представления, хранения и преобразования ... И. Информатика: Системы счисления и компьютерная арифметика. – М.: Лаборатория Базовых Знаний ... цифровой информации имеют многоуровневую структуру, т.е. построены ...
  2. #организация производства и управление предприятием учебник

    Учебник
    ... предприятия. Структура КС УКП предусматривает многоуровневую организацию управления: на уровне объединения (предприятия ... регулирование технологических процессов, статистический анализ, компьютерная технология и др. Отраслевая наука практически ...
  3. «Компьютерная лингвистика и интеллектуальные технологии» (1)

    Документ
    ... работы в компьютерной лексикографии Сфера компьютерной лексикографии довольно широка ... лексическими элементами; многоуровневые лексико-синтаксические конструкции ... интеграционный organization <интеграционная> организация 0 integration интеграция economic ...
  4. Организация образовательного процесса на основе требований СанПиН. Директор Халимова Г. К. зам директора по икт халиуллина Г. С. зам директора по увр бадретдинова А. М

    Документ
    ... десятилетия. Это сложный многоуровневый процесс, который нельзя ... информационной базы данных, использование компьютерных технологий, хранение и обработки ... технологий в преподавании и организации жизнедеятельности школьников. Информатизация образования ...
  5. «Компьютерная лингвистика и интеллектуальные технологии» (3)

    Документ
    ... экспериментальная лингвистика» Профиль: «Компьютерная лингвистика и интеллектуальные технологии» Кластеризация ... . 1988] обсуждается многоуровневый анализ лексической конструкции ... статистического анализа структурной организации конструкций. Основными ...

Другие похожие документы..