Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
9 Телефон: /411 / -83-77 Факс: -7 - 1 Заведующая —Лагутина Нина Николаевна Районный отдел планирования Номер фонда: 3. 195 -1984гг.   Муниципальный ар...полностью>>
'Документ'
Т. .14,0 10 -ПАФОС Габдрахманов Э.Р. .14,4 Резвость: ФЕНИКС – 31, – 31, – 33,3 – 3 ,8 - 38- II гит Дист. 1 00 м 101 бал. (50 -304- 0 ) 34-ФЕНИКС-гнгн....полностью>>
'Документ'
Сумма платы за услуги     руб.     коп. Итого     руб.     коп.  «     »    0     г. С условиями приема указанной в платежном документе суммы, в т....полностью>>
'Урок'
слушательское внимание, исполнительскую деятельность, как самовыражение переживаний в пении, музыкально-ритмической деятельности (игра на инструментах...полностью>>

Главная > Документ

Сохрани ссылку в одной из сетей:
Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Таким образом, проблема кодирования информации для компьютера естественным образом распадается на две составляющие: кодирование чисел и способ кодирования, который сводит информацию данного вида к числам. Согласно вопросу, мы здесь рассмотрим подробнее только первое направление.

Теоретической основой кодирования чисел является подробным образом развитая в математике теория систем счисления. Система счисления — это способ записи чисел с помощью фиксированного числа знаков. Последние имеют общепринятое название —
цифры
.

Системы счисления весьма разнообразны. Прежде всего они делятся на позиционные и непозиционные. Позиционной называется система счисления, в которой количественный эквивалент цифры зависит от ее положения в записи числа; в противном случае система является непозиционной. Большинство используемых на практике систем позиционно, поскольку именно для них обеспечивается наиболее простая арифметика.
В частности, используемая в быту система представления чисел позиционная (сравните значение цифры 2 в записи чисел 132 и 123!). Что же касается непозиционных систем, то сюда относятся хорошо известный римский способ записи чисел, а также унарная система, с которой вы, вероятно, встречались в первом классе (вспомните счетные палочки!).

В основе большинства систем счисления лежит принцип разложения по степеням некоторого целого числа2 , которое называется основанием системы счисления. Для используемой в быту системы основанием служит число 10 и его степени (сотни, тысячи и т.д.); математики называют ее десятичной, или системой счисления с основанием 10. Попутно заметим, что для построенных рассматриваемым традиционным способом систем счисления основание равняется количеству различных цифр, требуемых для изображения произвольных чисел.

Важно понимать, что десятичная система счисления лишь одна из возможных и не имеет никаких принципиальных преимуществ перед системами с другими основаниями. Например, двенадцатеричная денежная система значительно удобнее десятичной: английский шиллинг удается поровну разделить между двумя, тремя, четырьмя, шестью и двенадцатью людьми, тогда как 10 рублей справедливо распределяется только на двоих, пятерых или десятерых.

Для производства электронной вычислительной техники значительное удобство представляет двоичная система. Для инженеров существенно проще создать электронные элементы с двумя устойчивыми состояниями, соответствующими базовым цифрам системы 0 и 1. Кроме того, все арифметические и логические (булевские) операции наиболее просто реализовываются именно на двоичной основе, а их теория разработана в мельчайших деталях. Заметим, что на преимущества двоичной системы при разработке ЭВМ Джон фон Нейман указывал в своей классической работе еще в 1946 году.

Кроме перечисленных достоинств, двоичная система имеет, конечно, и недостатки, среди которых в первую очередь необходимо назвать необходимость перевода данных из “человеческой” (десятичной) системы счисления в “машинную” (двоичную) и обратно, а также громоздкость записи двоичных чисел. Рассмотрим названные проблемы подробнее.

Поскольку с математической точки зрения системы счисления с любыми основаниями равноправны, существует единый алгоритм перевода чисел из одной системы счисления в другую. Он заключается в последовательном делении рассматриваемого числа на основание системы счисления. К сожалению, алгоритм требует проведения арифметических действий в той системе счисления, в которой представлено исходное число, поэтому удобен лишь для перевода из десятичной системы в произвольную, но не наоборот.

Частным случаем указанного выше способа является перевод из десятичной системы счисления в двоичную, который нужен, чтобы узнать представление в компьютере произвольного десятичного числа. Опуская подробности4 , напомним, как выглядит процесс перевода числа 2010 в двоичный код:

Остается “собрать” итоговое двоичное число из остатков от деления, не забывая при этом, что старшие разряды получаются всегда позднее, чем младшие. В итоге получим: (20)10 = (10100)2.

Что касается обратного перевода из двоичной системы в десятичную, то универсальный алгоритм деления на основание системы здесь также возможен, но, как уже говорилось, его непосредственная арифметическая реализация неудобна. Поэтому на практике используется иной алгоритм, базирующийся на другом универсальном свойстве, о котором уже упоминалось в связи с определением основания системы счисления. Речь идет о том, что запись произвольного числа в любой системе счисления суть его разложение по степеням основания. Для интересующего нас сейчас случая двоичной системы вычисления будут выглядеть, например, так:

(10100)2 = 1 x 24 + 0 x 23 + 1 x 22 + 0 x 21 + 0 x 20 =

= 16 + 4 = (20)10.

Подчеркнем, что в приведенных выше примерах рассматривалась связь десятичной системы именно с двоичной только потому, что последняя применяется в компьютерах5 . С математической точки зрения вместо двоичной можно взять систему с любым другим основанием.

Обратимся теперь к проблеме громоздкости двоичного кода. Если посмотреть на двоичное число, представляющее собой представление некоторого десятичного с весьма умеренным числом цифр (например, трех- или четырехзначного числа), то обнаружится, что выглядит это чрезмерно длинно. Более того, длинная “однообразная” цепочка из нулей и единиц очень плохо воспринимается глазами. Чтобы облегчить ситуацию, для более компактной записи используется восьмеричная или шестнадцатеричная система счисления. Особенностью данных оснований является тот факт, что и 8, и 16 есть степени двойки, а значит, перевод между ними и двоичной системой максимально прост. Учитывая, что 8 = 23, а 16 = 24, получаем, что каждая восьмеричная цифра объединяет ровно 3 двоичных разряда, а шестнадцатеричная — 4.

Отсюда немедленно следует алгоритм перевода из двоичной системы в восьмеричную (шестнадцатеричную):

··сгруппировать двоичные разряды справа налево по три (четыре); если в старшей (т.е. самой левой) группе битов не хватает, их можно дополнить слева незначащими нулями;

··заменить каждую из полученных групп соответствующей ей восьмеричной (шестнадцатеричной) цифрой.

Например:

110102 = 0001 1010 = 1A16.

Обратный переход еще проще: достаточно каждую восьмеричную (шестнадцатеричную) цифру заменить ее двоичным представлением, дополняя его при необходимости до трех (четырех) двоичных цифр нулями слева.

Для облегчения процессов перевода удобно составить таблицу соответствия между восьмеричными или шестнадцатеричными цифрами и их двоичными кодами.

Остается обсудить вопросы, связанные с двоичной арифметикой. Отметим, что арифметические действия в системах счисления с любыми основаниями производятся по одинаковым правилам. Единственное отличие состоит в том значении, при превышении которого возникает перенос в следующий разряд. В общепринятой десятичной системе “критическое” значение равно 10 (вспомните: “8 + 7 = 15, 5 пишем, 1 в уме”).
В двоичной системе, где нет никаких цифр, кроме 0 и 1, перенос наступает, когда в разряде получается результат, равный 2 (или больше). Нетрудно сообразить, что минимальное значение, при котором возникает перенос, равно количеству цифр и, следовательно, основанию системы счисления.

В свете последнего вывода можно сформулировать правила арифметических операций, которые не зависят от применяемой системы счисления. Покажем, как это сделать на примере сложения.

Сложение двух чисел в системе счисления с основанием N осуществляется поразрядно от младших разрядов к старшим (“справа налево”, если смотреть на запись числа). Когда сумма данного разряда S не превышает значения N, результат сложения является окончательным. Если же S N, то происходит перенос в старший (“более левый”) разряд, причем каждая единица переноса уменьшает значение S на величину N.

Можно сформулировать аналогичные правила и для остальных арифметических операций. После этого достаточно положить N = 2, и мы получим правила арифметики для двоичной системы.

или в десятичной системе 6 + 10 = 16

Для выполнения арифметических операций (сложение, вычитание, умножение, деление) в системе счисления с основанием P необходимо иметь соответствующие таблицы сложения и умножения. Для P = 2 таблицы представлены ниже.

Литература

1. Андреева Е.В., Фалина И.Н. Информатика: Системы счисления и компьютерная арифметика. М.: Лаборатория Базовых Знаний, 1999, 256 с.

2. Андреева Е.В., Усатюк В.В., Фалина И.Н. Представление информации в компьютере. Информатика, 2005, № 13, с. 1–48.

3. Андреева Е.В., Босова Л.Л., Фалина И.Н. Математические основы информатики. М.: БИНОМ. Лаборатория Знаний, 2005, 328 с.

4. Гейн А.Г. Четыре года спустя, или Стандарт по информатике: и в нем нам хочется дойти до самой сути. Информатика, 2005, № 5, с. 3–11.

5. Еремин Е.А. Популярные лекции об устройстве компьютера. СПб.: BHV-Петербург, 2003, 272 с. (см.
п. 2.5.5).

6. Еремин Е.А. Непрерывная и дискретная информация. Информатика, 2004, № 42, с. 16–17.

7. Еремин Е.А. У компьютера своя информатика. Информатика, 2006, № 9, с. 37–40; № 10, с. 38.

8. Еремин Е.А., Шестаков А.П. Материалы для подготовки к устной итоговой аттестации по информатике в 11-м классе. Информатика № 9, 2003, с. 6–9.

9. Информационная культура: Кодирование информации. Информационные модели. М.: Дрофа, 2000, 208 с.

10. Стариченко Б.Е. Теоретические основы информатики. М.: Горячая линия — Телеком, 2003, 312 с.

11. Толстых Г.Д. Числа в математике, физике и информатике. Информатика и образование, 1997, № 8,
с. 36–40.

12. Толстых Г.Д. Представление чисел: от абака до компьютера. Информатика и образование, 1998, № 1, с. 43–47.

13. Фомин С.В. Системы счисления (Популярные лекции по математике, вып. 40). М.: Наука, 1980, 48 с.

1 Для тех, кто не силен в английском языке, напоминаем, что computer и переводится как “вычислитель”.

2 Строго говоря, это не единственно возможный способ, но для экзаменационных целей его явно хватит; заинтересованные читатели могут обратиться к указанным в списке литературы книгам.

3 Кроме, разумеется, удобства счета на пальцах, но, по-видимому, современному образованному человеку это не требуется.

4 Вопрос этот настолько “затаскан”, что авторы не считают вправе тратить место на газетной странице, в 1001-й (в десятичной системе!) раз излагая то, что есть в любом учебнике.

5 На самом деле применение алгоритмов перевода при практической реализации в компьютере обнаруживает целый ряд неожиданных особенностей; интересующихся читателей адресуем к статье одного из авторов, опубликованной в газете в этом году в номерах 9 и 10.

2. В векторном графическом редакторе построить чертеж, иллюстрирующий условие планиметрической задачи.

Среди векторных графических редакторов наиболее популярным является Corel Draw, поэтому велика вероятность выбора в качестве инструмента решения задачи именно этого редактора.

Поскольку технология создания рисунка в векторном редакторе обсуждается в одном из билетов (см. билет № 19), не будем здесь на этом останавливаться. Приведем лишь несколько примеров математических задач, которые можно использовать при формулировании данного задания.

Варианты заданий

В векторном графическом редакторе построить чертеж, иллюстрирующий условие следующей планиметрической задачи.

1. Точка на гипотенузе, равноудаленная от обоих катетов, делит гипотенузу на отрезки длиной 30 и
40 см. Найдите катеты треугольника.

2. К окружности, вписанной в равнобедренный треугольник с основанием 12 см и высотой 8 см, проведена касательная, параллельная основанию. Найти длину отрезка этой касательной, заключенного между сторонами треугольника.

3. В равнобедренную трапецию вписан круг. Одна из боковых сторон делится точкой касания на отрезки длиной m и n. Определить площадь трапеции.

4. Три окружности разных радиусов попарно касаются друг друга. Прямые, соединяющие их центры, образуют прямоугольный треугольник. Найти радиус меньшей окружности, если радиусы большей и средней окружностей равны 6 и 4 см.

5. Каждая из трех равных окружностей радиуса r касается двух других. Найти площадь треугольника, образованного общими внешними касательными к этим окружностям.

3. Построить логическую схему для заданной таблицы истинности (таблица задана для трех переменных).

Построить логическую схему для заданной таблицы истинности:

Для решения задачи необходимо записать логический многочлен (конъюнктивный или дизъюнктивный), имеющий в качестве своей таблицы истинности заданную, а затем построить соответствующую ему логическую схему. Чаще всего полученный многочлен предварительно упрощают с целью минимизации количества используемых логических элементов. Очевидно, что поскольку предполагаются лишь эквивалентные преобразования, то результирующая схема будет эквивалентна той, которая была бы построена по исходному логическому выражению и, таким образом, будет соответствовать условию задачи.

Анализируя таблицу истинности, замечаем, что количество нулей и единиц в результате (значения переменной F) одинаково, поэтому выбор конкретного способа построения может быть любым. Выберем дизъюнктивный многочлен.

Получаем (для сокращения записи знак конъюнкции пропущен, отрицание переменной обозначено горизонтальной черточкой сверху):

При преобразовании выражения использовались законы логики (см. билет № 8).

Построим соответствующую логическую схему:

 Варианты заданий

Построить логическую схему для заданной таблицы истинности:



Похожие документы:

  1. Рабочая учебная программа по предмету; материалы к урокам; поурочные планы

    Рабочая учебная программа
    ... Примерные билеты и ответы по обществознанию. Москва: Дрофа, 2009 Лебедев А.М. Обществознание. Ответы на экзаменационные билеты ... Геометрия (базовый и профильный уровни) 10-11 ... . Рудзитиса). Еремина Е. А. ...         ·         Шестаков В. А. Россия в 1992-1999 ...
  2. Информационный бюллетень Администрации Санкт-Петербурга №41 (842) от 28 октября 2013 г

    Информационный бюллетень
    ... на встрече с профильным Комитетом ... билет», в рамках которой приобрести билет на ... на подстанции 215 трансформаторов – это примерно ... телевидения ответил на вопросы ... Консерватории Дмитрия Еремина (виолончель) ... Владимир Александрович Шестаков 29 октября ...

Другие похожие документы..