Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
Центр анализа деятельности органов исполнительной власти Института государственного и муниципального управления предлагает обучение по программам повы...полностью>>
'Документ'
08.09-1 .09 кл. 8.1 -1 .1 , 8, 9 кл. 1 .05-15.05 , 8 кл. .09- 7.09 8, 9 кл. 19.01- 3.01 Химия 9 кл. 15.09- 0.09 9 кл. 10.11-14.11 9 кл....полностью>>
'Учебно-методический комплекс'
Данный учебно-методический комплекс реализован в курсе «Методика исследований в социальной работе и социальная статистика» Гончаровой Н.П., к.с.н., до...полностью>>
'Урок'
В поурочное планирование включены разделы электронного учебного издания (ЭУИ) «1С: Образовательная коллекция. География. Наш дом – Земля. Материки, ок...полностью>>

Главная > Документ

Сохрани ссылку в одной из сетей:
Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

31

Муниципальное общеобразовательное учреждение

«Средняя общеобразовательная школа № 28».

Замощение плоскости в пространстве.

Научно-исследовательский реферат

Математика

ученицы 10 класса

Комарчевой Анны

Руководитель:

учитель математики Овсянкина О.А.

г. Мытищи

2011

Оглавление

Введение…………………………………………………………………………3

Определение замощения плоскости……………………………………………..4

История появления замощения………………………………………………..5

Паркеты………………………………………………………………………......7

Непериодическое замощение Х. Фодерберга………………………………...10

Простейшее замощение……………………………………………………….11

Мозаика Роджера Пенроуза…………………………………………………..12

Свойства мозаики Пенроуза…………………………………………………..13

Сенсационное открытие……………………………………………………….14

Квазикристаллы……………………………………………………………….17

Структура квазикристаллов…………………………………………………….19

Свойства квазикристаллов…………………………………………………….21

Фуллерены и квазикристаллы………………………………………………...24

Морис Эшер…………………………………………………………………....26

Средневековые орнаменты……………………………………………………28

Структура гирихов……………………………………………………………..31

Заключение……………………………………………………………………..34

Введение

Актуальность реферата заключается в том, что  замощение  плоскости активно изучается в физике кристаллов, геометрии, а также встречается в повседневной жизни.

Еще древние художники создавали удивительные геометрические орнаменты. Для создания своих узоров они применяли не простые, случайно придуманные контуры, а фигуры, которые были расположены в определённом порядке. А самое удивительное, что люди снова встретились с ними позже. Древние узоры – не что иное, как то, что спустя столетия назовут решётками Пенроуза и найдут в структуре квазикристаллов!

А знаменитый голландский художник Морис Эшер (1898-1972), создавший знаменитые гравюры и мозаики, и никогда не понимавший математику, утверждал: «Все мои произведения — это игры. Серьезные игры». Однако в этих играх математики всего мира вот уже несколько десятилетий рассматривают абсолютно серьёзные, материальные доказательства идей, созданных с помощью исключительно математического аппарата.

Самое серьезное внимание проблеме замощения плоскости в пространстве стали уделять в последние пятьдесят лет, после открытий в физике кристаллов - твердых металлических сплавов. В кристаллографии поворотная симметрия 5-го порядка наиболее эффективно представлена в мире растений и в простейших живых организмах, в частности в некоторых разновидностях вирусов, в некоторых обитателях морей.

Определение замощения плоскости

Замощение — это покрытие всей плоскости неперекрывающимися фигурами.

Замощение — разбиение плоскости или пространства на фигуры без общих внутренних точек или покрытие всей плоскости неперекрывающимися фигурами.

Вероятно, впервые интерес к замощению возник в связи с построением мозаик, орнаментов и других узоров. Известно много орнаментов, составленных из повторяющихся мотивов.

Замощение плоскости можно представить в виде набора склеенных по границам фигур. Один из простейших примеров - так называемое гексагональное замощение, когда плоскость, как соты, составлена из шестиугольников, соединенных по сторонам. Замощение называется периодическим, если при сдвиге на некоторый вектор оно переходит в себя. В гексагональном случае это, например, вектор, соединяющий центры соседних шестиугольных ячеек.

История появления замощения

Вероятно, впервые интерес к замощению возник в связи с построением мозаик, орнаментов и других узоров. Известно много орнаментов, составленных из повторяющихся мотивов.

Уже пифагорейцам было известно, что имеется только три вида правильных многоугольников, которыми можно полностью замостить плоскость без пробелов и перекрытий, — треугольник, квадрат и шестиугольник.

Математическая проблема непериодичного замощения плоскости существует уже около полувека. Самое известное решение этой проблемы - мозаика Пенроуза, которая появилась в семидесятых годах прошлого века, и в которой используется всего две различные фигуры.

А первый набор плиток, состоящий из 20 426 фигур, представил в 1966 году математик Роберт Бергер. Через некоторое время он, впрочем, сумел сократить число необходимых плиток до 104.

Автору рассматриваемой работы для решения задачи хватило одной фигуры — правильного шестиугольника. При укладке таких плиток черные линии не должны прерываться, а флажки в вершинах шестиугольников, которые находятся на расстоянии, равном длине одной стороны плитки (на рисунке отмечены стрелками), должны смотреть в одну сторону.

Паркеты

В каждом из замощений, где используются квадрат, правильный треугольник и правильный шестиугольник любые два многоугольника имеют либо общую сторону, либо только общую вершину, либо вовсе не имеют общих точек. Замощения плоскости многоугольниками, удовлетворяющие этому требованию, называют паркетами.

Убедиться в том, что никакой другой правильный многоугольник паркета не образует, совсем просто. И здесь нам понадобится формула суммы углов многоугольника.

Если паркет составлен из n-угольников, то в каждой верши­не паркета будет сходиться  k = 360°/ an многоугольников, где n — угол правильного n-угольника. Легко найти, что a3 = 60°, a4 = 90°, a5 = 108°, a6 = 120° и 120° < an < 180° при п > 7. Поэтому 360° делится нацело на an только при п = 3; 4; 6. 

Паркеты из правильных многоугольников сами правильные в том смысле, что они «одинаково устроены» относительно всех своих вершин и всех составляющих паркеты кусочков-многоугольников. (Эти кусочки называются гранями замощения или просто плитками.) Другими словами, для любых двух вершин правильного паркета можно указать такое его самосовмещение, при котором одна из вершин попадает на другую. То же верно для любых двух плиток паркета. 

Можно потребовать, чтобы паркет был правильным только «по вершинам», но разрешить использовать разные виды правильных многоугольников. Тогда к трём исходным паркетам добавятся ещё восемь.

Рассматривают и другое обобщение — паркеты из копий произвольного многоугольника, правильные «по граням» (т. е. допускающие самосовмещения, которые переводят любую за­данную плитку в любую другую). Число таких паркетов — 46, включая и первые три.

Многоугольники, которые могут быть плитками в этих паркетах, называются планигонами. Ясно, что плоскость можно уложить копиями произвольного треугольника, но менее очевидно, что произвольный четырёхугольник — планигон. То же верно и для любого шестиугольника, противоположные стороны которого равны и параллельны.

Все рассмотренные выше паркеты периодичны, т. е. в каждом из них можно выделить (и даже многими способами) составленную из нескольких плиток область, из которой параллельными сдвигами получается весь паркет. Интерес учёных к таким конструкциям объясняется тем, что периодические замощения, особенно замощения пространства, моделируют кристаллические структуры.

Непериодическое замощение Х. Фодерберга

Существуют и непериодические замощения, например, очень красивое спиральное замощение плоскости девятиугольниками, придуманное в 1936 г. немецким математиком X. Фодербергом. Впрочем, объединив эти плитки попарно в центрально-симметричные восьмиугольники, можно замостить ими плоскость и периодически. 

Долгое время предполагали, что не существует плиток и даже наборов из нескольких различных плиток, копии которых могли бы устилать плоскость только непериодически. Однако в середине  60-х гг. XX в. эта гипотеза была опровергнута, для чего понадобился набор из более чем 20 000 разных видов плиток. Шаг за шагом число плиток удавалось уменьшить, и, наконец, через десять лет английскому математику Роджеру Пенроузу удалось обойтись всего двумя очень простыми фигурками. 

Простейшее замощение

Одно из простейших замощений можно описать так. Плоскость покрыта параллелограммами, причем все параллелограммы одинаковы. Любой параллелограмм этого замощения можно получить из первоначального параллелограмма, сдвигая его на вектор nU ± mV (векторы U и V определяются ребрами выделенного параллелограмма, n и m — целые числа). Следует отметить, что все замощение как целое переходит в себя при сдвиге на вектор U (или V). Это свойство можно взять в качестве определения: именно, периодическим замощением с периодами U и V назовем такое замощение, которое переходит в себя при сдвиге на вектор U и на вектор V.


Мозаика Роджера Пенроуза

Долгое время предполагали, что не существует плиток и даже наборов из нескольких различных плиток, копии которых могли бы устилать плоскость только непериодически. Однако в середине  60-х гг. XX века эта гипотеза была опровергнута, для чего понадобился набор из более чем 20 000 разных видов плиток. Шаг за шагом число плиток удавалось уменьшить, и, наконец, через десять лет английскому математику Роджеру Пенроузу удалось обойтись всего двумя очень простыми фигурками.

Английский математик Роджер Пенроуз придумал в 1973 году такую штуку – особенную мозаику из геометрических фигур. Называться она стала, соответственно, мозаикой Пенроуза. Чего же в ней такого специфического? Мозаика Пенроуза представляет собой узор, собранный из многоугольных плиток двух определённых форм (немного различающихся ромбов). Ими можно замостить бесконечную плоскость без пробелов.

Получающееся изображение выглядит так, будто является неким "ритмическим" орнаментом – картинкой, обладающей трансляционной симметрией. Такой тип симметрии означает, что в узоре можно выбрать определённый кусочек, который можно "копировать" на плоскости, а затем совмещать эти "дубликаты" друг с другом параллельным переносом (проще говоря, без поворота и без увеличения).

Однако, если присмотреться, можно увидеть, что в узоре Пенроуза нет таких повторяющихся структур – он апериодичен. Но дело отнюдь не в оптическом обмане, а в том, что мозаика не хаотична: она обладает вращательной симметрией пятого порядка. Это значит, что изображение можно поворачивать на минимальный угол, равный 360 / n градусам, где n –порядок симметрии, в данном случае n = 5. Следовательно, угол поворота, который ничего не меняет, должен быть кратен 360 / 5 = 72 градусам.

Мозаика Пенроуза обладает свойствами:

1. Отношение числа тонких ромбов к числу толстых оказывается всегда равно так называемому "золотому" числу 1,618...

2.Она не переходит в себя ни при каких сдвигах, т.е. не периодична

3.Обладает вращательной симметрией пятого порядка. Угол поворота кратен 360° / 5 = 72. Получившиеся узоры имеют квазикристалическую форму, которая имеет осевую симметрию 5-го порядка. Структура мозаики связна с последовательностью Фибоначчи.

Сенсационное открытие

Примерно десятилетие выдумка Роджера Пенроуза считалась не более чем милой математической абстракцией.

Позже учёные США и Израиля - Д. Шехтман, И. Блех, Д. Гратиас и Дж. Кан - сделали сенсационное открытие, обнаружив непериодическую структуру быстро охлаждённого сплава марганца и алюминия. Ранее считалось, что кристаллы имеют осевую симметрию лишь 1-го, 2-го, 3-го, 4-го и 6-го порядка. Иными словами, кристаллы, имеющие осевую симметрию 5-го порядка, находятся в состоянии плавного перехода между аморфными телами и периодическими кристаллами.

Предыдущие представления, существовавшие в физике твёрдого тела, исключали такую возможность: структура дифракционной картины обладает симметрией пятого порядка.

Её части нельзя совмещать параллельным переносом, а значит, это вовсе никакой не кристалл. Но дифракция характерна как раз для кристаллической решётки!

Как тут быть? Вопрос непростой, поэтому учёные договорились о том, что данный вариант будет назваться квазикристаллами – чем-то вроде особого состояния вещества. Таким образом, математический курьез стал моделью, описывающей внутреннее строение квазикристаллов.

Ну а вся красота открытия, в том, что для него уже давно готова математическая модель. Мозаика Пенроуза - великолепный пример того, как красивое построение, находящееся на стыке различных дисциплин, обязательно находит себе применение. Если узловые точки заменить атомами, мозаика Пенроуза станет хорошим аналогом двухмерного квазикристалла, так как имеет много свойств, характерных для такого
состояния вещества. И вот почему:

Во-первых, построение мозаики реализуется по определенному алгоритму, вследствие чего она оказывается не случайной, а упорядоченной структурой. Любая ее конечная часть встречается во всей мозаике бесчисленное множество раз.

Во-вторых, в мозаике можно выделить много правильных десятиугольников, имеющих совершенно одинаковые ориентации. Они создают дальний ориентационный порядок, названный квазипериодическим. Это означает, что между удаленными структурами мозаики существует взаимодействие, которое согласовывает расположение и относительную ориентацию ромбов вполне определенным, хотя и неоднозначным.
В-третьих, если последовательно закрасить все ромбы со сторонами, параллельными какому-либо выбранному направлению, то они образуют серию ломаных линий.

Вдоль этих ломаных линий можно провести прямые параллельные линии, отстоящие друг от друга приблизительно на одинаковом расстоянии. Благодаря этому свойству можно говорить о некоторой трансляционной симметрии в мозаике Пенроуза.

В-четвертых, последовательно закрашенные ромбы образуют пять семейств подобных параллельных линий, пересекающихся под углами, кратными 72°. Направления этих ломаных линий соответствуют направлениям сторон правильного пятиугольника. Поэтому мозаика Пенроуза имеет в какой-то степени поворотную симметрию 5-го порядка и в этом смысле подобна квазикристаллу.



Похожие документы:

  1. Переход через границу. Катя Рерих Встреча с Лениным. Мой большевизм

    Документ
    ... одной плоскости, ... научно-исследовательского энергетического ... заработка 10 франков), ... замощенных ... классы общества" - меня интересовали несравнимо больше, чем высшая математика ... в пространства и ... свою ученицу Ортодокс ... читались светские рефераты о Марксе, ...

Другие похожие документы..