Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
Правительство Москвы уведомляет Вас о возможности льготного отдыха в детских оздоровительных лагерях и санаториях Подмосковья, Рязанской и Брянской об...полностью>>
'Урок'
- способствовать развитию коммуникативных качеств обучающихся, умение выделять главное, делать выводы, ставить и разрешать проблемы, при выполнении за...полностью>>
'Документ'
Члены: Белобаба Н.В.,Пономарев В.М., Залевский Г.В., Дмитриченков А.С., Холтобин А.Н., Самолетов М.Б., Пупынин П.А., Визер В.Г., Карабиц С.Г., Ковалев...полностью>>
'Программа'
Кураторы внутри команд собирают точные ожидания участников на выездной семинар и ставят цели. Участники точно представляют то, зачем приехали. Дается ...полностью>>

Главная > Документ

Сохрани ссылку в одной из сетей:
Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Глава 9

Техническое и юридическое обеспечение режима электронной подписи

9.1. Понятие об электронной цифровой подписи

Особенности рукописной подписи

Одним из основных реквизитов обычных документов является рукописная подпись. Она подтверждает факт взаимосвязи между сведениями, содержащимися в документе, и лицом, подписавшим документ, то есть, является одним из средств идентификации личности. В основу использования рукописной подписи как средства идентификации положена гипотеза об уникальности личных биометрических параметров человека.

Применение рукописной подписи имеет исторический и традиционный характер, хотя и не лишено известных недостатков. Так, например, ее степень защиты совершенно недостаточна. В тех случаях, когда требуется повышенная достоверность сведений, изложенных в документе, применяют дополнительные средства. К примеру, на финансовых документах необходимо наличие двух рукописных подписей (первой и второй), а также печати юридического лица. Там, где и этого недостаточно, используют заверяющую подпись уполномоченного органа, например подразделения нотариата. Дальнейшее повышение достоверности документов возможно путем использования специальных бланков, имеющих особые средства защиты. Характерной особенностью рукописной подписи является ее неразрывная физическая связь с носителем информации. То есть, рукописная подпись возможна только на документах, имеющих материальную природу. Электронные документы, имеющие логическую природу, к этой категории не относятся. Таким образом, при совершении сделок, факт которых удостоверяется рукописной подписью, стороны-участники должны находиться либо в непосредственном контакте, либо в опосредованном, через материальный носитель и услуги сторонних организаций (служб доставки). Из существования неразрывной связи между подписью и материальным носителем документа вытекает необходимое различие между оригиналами и копиями документов, полученными средствами копировально-множительной техники(KMT), Копии отличаются по свойствам от оригиналов, и потому либо имеют меньшую юридическую силу, либо должны проходить дополнительные заверяющие процедуры.

Последний недостаток рукописной подписи, который мы отметим, является функциональным. Он связан с тем, что рукописная подпись обеспечивает только идентификацию документа, то есть подтверждает его отношение к лицу, поставившему подпись, но ни в коей мере не обеспечивает аутентификацию документа, то есть его целостность и неизменность. Без специальных дополнительных мер защиты рукописная подпись не гарантирует тот факт, что документ не подвергся содержательным изменениям в ходе хранения или транспортировки.

Особенности электронной цифровой подписи

В отличие от рукописной подписи, электронная цифровая подпись (ЭЦП) имеет не физическую, а логическую природу — это просто последовательность символов (можно сказать, кодов), которая позволяет однозначно связать автора документа, содержание документа и владельца ЭЦП. Логический характер электронной подписи делает ее независимой от материальной природы документа. С ее помощью можно помечать, а впоследствии аутентифицировать документы, имеющие электронную природу (исполненные на магнитных, оптических, кристаллических и иных носителях, распределенные в компьютерных сетях и т. п.). О том, какими техническими средствами это достигается, мы расскажем ниже, а пока остановимся на ряде положительных свойств ЭЦП, которые из этого вытекают.

Сопоставимость защитных свойств. При использовании сертифицированных средств ЭЦП защитные свойства электронной подписи выше, чем ручной. Более того, им можно дать объективную оценку, основанную не на гипотезе об уникальности биометрических параметров человека, а на строгом математическом анализе. Отсюда вытекает принципиальная возможность сопоставимости защитных свойств ЭЦП.

Здесь и далее под средствами ЭЦП понимаются программные или аппаратные средства вычислительной техники, предназначенные для создания электронной цифровой подписи и для работы с нею.

Масштабируемость. Из возможности объективной оценки защитных свойств ЭЦП вытекает свойство масштабируемости. Так, например, в гражданском документообороте возможно применение простейших средств ЭЦП, в служебном документообороте — сертифицированных средств, а если речь идет о классифицированной информации, имеющей ограничительные реквизиты, необходимо применение специальных средств ЭЦП.

Дематериализация документации. Независимость ЭЦП от носителя позволяет использовать ее в электронном документообороте. При использовании ЭЦП возможны договорные отношения между удаленными юридическими и физическими лицами без прямого или опосредованного физического контакта между ними. Это свойство ЭЦП лежит в основе электронной коммерции.

Равнозначность копий. Логическая природа ЭЦП позволяет не различать копии одного документа и сделать их равнозначными. Снимается естественное различие между оригиналом документа и его копиями, полученными в результате тиражирования (размножения).

Дополнительная функциональность. Б основе механизма работы средств ЭЦП лежат криптографические средства, а это позволяет расширить функциональные свойства подписи. В отличие от рукописной, электронная подпись может выступать не только средством идентификации, но и средством аутентификации документа. В электронный документ, подписанный ЭЦП, нельзя внести изменения, не нарушив подпись. Факт несоответствия подписи содержанию документа обнаруживается программными средствами, и участник электронной сделки получает сигнал о неадекватности документа и подписи.

Автоматизация. Механизм обслуживания ЭЦП основан на программных и аппаратных средствах вычислительной техники, поэтому он хорошо автоматизируется. Все стадии обслуживания (создание, применение, удостоверение и проверка ЭЦП) автоматизированы, что значительно повышает эффективность документооборота. Это свойство ЭЦП широко используется в электронной коммерции.

Вместе с тем, использование электронной подписи вместо рукописной имеет и характерные недостатки. Хотя автоматизация и способствует повышению производительности труда, она выводит механизм подписи из-под контроля естественными методами (например, визуальными) и может создавать иллюзию благополучия. Поэтому для использования ЭЦП необходимо специальное техническое, организационное и правовое обеспечение. Основой для них должен стать «Федеральный закон об электронной цифровой подписи», который к моменту написания данной книги еще не принят и существует лишь в качестве проекта.

9.2. Техническое обеспечение электронной цифровой подписи

Здесь и далее мы будем рассматривать применение электронной цифровой подписи в договорных отношениях между удаленными сторонами, не имеющими между собой прямого или опосредованного контакта через материальные носители информации. Этот случай является наиболее общим. Он соответствует двум основным развиваемым сегодня моделям электронной коммерции: Производитель — Производитель и Производитель -- Потребитель.

Важной проблемой договорных отношений, происходящих в электронной форме, является возможность отказа (repudiation) одной из сторон от условий сделки и/или от своей подписи. Из нее вытекает потребность в средствах объективной идентификации партнеров. Если таких средств нет или они несовершенны, договаривающиеся стороны получают возможность отказа от своих обязательств, вытекающих из условий договора.

Важно иметь в виду, что за таким отказом не обязательно должен стоять злой умысел. Отказ вполне оправдан, если партнер установил злоупотребление своими реквизитами со стороны неуполномоченных лиц или факт одностороннего внесения изменений в содержание договора. Такие события возможны как со стороны каждого из партнеров, так и на путях транспортировки документов.

Потребность в криптографии

Для упрощения технической стороны вопроса мы перейдем от использования понятии договор и документ к понятию сообщение. Это позволяет формально подойти к содержательной стороне документов и рассматривать только содержание сообщения. Такой методологический прием характерен для информатики. Далее мы будем рассматривать документы какуминальные последовательности символов. Требование уникальности связано с тем, что, если хотя бы один символ в последовательности будет как-то изменен, это будет уже совсем иной документ, не адекватный исходному.

Еще одно допущение, которое мы сделаем, относится к способу транспортировки сообщения. Любые виды транспортировки, будь то обычная почта, курьерская, электронная или иная, мы заменим термином канал связи.

Чтобы последовательность символов, представляющих сообщение, могла однозначно идентифицировать ее автора, необходимо, чтобы она обладала уникальными признаками, известными только отправителю и получателю сообщения. С незапамятных времен это достигается применением средств шифрования (более общий термин — криптография). Если обе стороны используют один и тот же метод шифрования сообщений, известный только им, то мы можем говорить о том, что они общаются в защищенном канале. В защищенном канале каждая из сторон получает относительную уверенность в том, что:

• автором сообщения действительно является партнер (идентификация партнера);

• сообщение не было изменено в канале связи (аутентификация сообщения).

Эта уверенность относительна, так как посторонним лицам могут стать известны и метод шифрования, и его ключ.

Метод и ключ шифрования

Метод шифрования — это формальный алгоритм, описывающий порядок преобразования исходного сообщения в результирующее. Ключ шифрования — это набор параметров (данных), необходимых для применения метода.

Существует бесконечное множество методов (алгоритмов) шифрования. Как сообщают, Юлий Цезарь для связи со своими военачальниками использовал метод подстановки с ключом, равным 3. В исходном сообщении каждый символ замещался другим символом, отстоящим от него в алфавите на 3 позиции.

A=D B = E С=F и т.д.

Разумеется, в данном случае как метод, так и ключ шифрования настолько просты, что на их защищенность можно рассчитывать только в том случае, если канал обслуживают лица (посыльные), не имеющие элементарной грамотности. Незначительно повысить защиту можно, если использовать более длинный ключ шифрования, например: 3—5—7. В этом случае первый символ сообщения смещается на три позиции, второй — на пять, третий — на семь позиций, после чего процесс циклически повторяется. В данном случае последовательность символов ключа можно рассматривать как ключевое слово. Если ключ содержит несколько ключевых слов, его называют ключевой фразой.

Если один и тот же ключ используется многократно для работы с различными сообщениями, его называют статическим. Если для каждого сообщения используется новый ключ, его называют динамическим. В этом случае сообщение должно нести в себе зашифрованную информацию о том, какой ключ из известного набора был в нем использован.

Симметричные и несимметричные методы шифрования

Рассмотренный выше метод подстановки является классическим примером симметричного шифрования, известного с глубокой древности. Симметричность заключается в том, что обе стороны используют один и тот же ключ. Каким ключом сообщение шифровалось, тем же ключом оно и дешифруется (рис. 9.1).

Рис. 9.1. Защита сообщения симметричным ключом

Современные алгоритмы симметричного шифрования обладают очень высокой стойкостью и могут использоваться для уверенной аутентификации сообщений, но у них есть заметный недостаток, препятствующий их применению в электронной коммерции. Дело в том, что для использования симметричного алгоритма стороны должны предварительно обменяться ключами, а для этого опять-таки нужно либо прямое физическое общение, либо защищенный канал связи. То есть, для создания защищенного канала связи нужно предварительно иметь защищенный канал связи (пусть даже и с малой пропускной способностью). Как видите, проблема не разрешается, а лишь переходит на другой уровень.

Алгоритмы симметричного шифрования трудно напрямую использовать в электронной коммерции. Так, например, если некая компания, осуществляющая торговлю в Интернете, производит расчеты с покупателями с помощью кредитных или дебетовых карт, то ее клиенты должны передавать сведения о своей карте в виде зашифрованного сообщения. Если у компании тысячи клиентов, то ей придется столкнуться с чисто техническими проблемами:

• каждому покупателю надо создать по ключу и где-то все эти ключи хранить, что само по себе небезопасно;

• эти ключи пришлось бы передавать по незащищенным каналам связи, а это практически ничем не лучше, чем сразу открыто передавать по ним данные о платежном средстве;

• как-то надо было бы связывать покупателей с их ключами, чтобы не применить к заказу Джона Буля ключ, выданный Ивану Петрову, то есть, возникает все та же проблема идентификации удаленного и незнакомого партнера.

Таким образом, для электронной коммерции традиционные методы шифрования, основанные на симметричных ключах, не годятся. Лишь в последние три десятилетия появились и получили развитие новые методы, получившие название методов несимметричной криптографии. Именно на них и основана электронная коммерция вообще и средства ЭЦП в частности. Впрочем, как мы увидим в следующей главе, у симметричной криптографии тоже есть определенные преимущества, и она тоже используется в электронной коммерции, например, в гибридных системах, сочетающих несимметричную и симметричную криптографию.

Основы несимметричной криптографии

Несимметричная криптография использует специальные математические методы, выработанные в результате развития новых отраслей математики в последние десятилетия. На основе этих методов были созданы программные средства, называемые средствами ЭЦП. После применения одного из таких средств образуется пара взаимосвязанных ключей, обладающая уникальным свойством: то, что зашифровано одним ключом, может быть дешифровано только другим, и наоборот. Владелец пары ключей может оставить один ключ себе, а другой ключ распространить (опубликовать). Публикация открытого ключа может происходить прямой рассылкой через незащищенный канал, например по электронной почте. Еще удобнее выставить открытый ключ на своем (или арендованном) Web-сервере, где его сможет получить каждый желающий.

Ключ, оставленный для себя, называется закрытым, или личным, ключом (private'). Опубликованный ключ называется открытым, или публичным (public). Сообщения (заказы, договоры и т. п.), направляемые владельцу ключевой пары, шифруются его открытым ключом. Они дешифруются с помощью закрытого ключа. Если же владелец ключевой пары захочет обратиться с сообщением к своим клиентам, он зашифрует его закрытым ключом, а получатели прочитают его с помощью соответствующих открытых ключей.

Рис. 9.2. Защита сообщения несимметричными ключами

При этом важно обратить внимание на следующие обстоятельства.

1. Использование закрытого ключа позволяет идентифицировать отправителя.

При использовании несимметричного шифрования достигается возможность идентификации отправителя. Если клиент обратился с заказом к фирме ABC, торгующей программными средствами, и получил в ответ зашифрованный файл, то он может применить к нему открытый ключ фирмы. Если этот файл направила ему не фирма ABC, а неизвестное лицо, то ключ не подойдет, сообщение не будет дешифровано и вредных последствий от использования неизвестного программного обеспечения не наступит.

2. Использование открытого ключа позволяет аутентифицировать сообщения,

Если клиент фирмы ABC вместе с заказом указывает конфиденциальные данные, например о своей платежной карте, то он может быть уверен в том, что никто посторонний эту информацию не прочитает, так как сообщение, зашифрованное открытым ключом, можно прочесть только владелец закрытого ключа.

3. Обмен открытыми ключами между партнерами позволяет им создать направленный канал связи между собой.

Если два партнера, никогда ранее не встречавшиеся, желают вступить в переписку, они могут сделать это, обменявшись своими открытыми ключами. Тогда каждый из них будет отправлять свое сообщение, зашифровав его своим закрытым ключом, а партнер будет читать его соответствующим открытым ключом. При этом получатель сообщения может быть уверен в том, что получил письмо от партнера, а не от лица, пожелавшего остаться неизвестным.

4. Двойное последовательное шифрование сначала своим личным ключом, а затем открытым ключом другой стороны, позволяет партнерам создать защищенный направленный канал связи.

В предыдущей схеме шифрование используется отнюдь не для защиты информации, содержащейся в сообщении, а только для идентификации отправителя. Можно совместить обе эти функции. Для этого отправитель должен применить к сообщению два ключа. Сначала он шифрует сообщение своим закрытым ключом, а затем то, что получится, шифруется открытым ключом получателя. Тот действует в обратном порядке. Сначала он дешифрует сообщение своим закрытым ключом и делает его «читаемым». Потом он дешифрует сообщение открытым ключом отправителя и убеждается, в личности того, кто прислал это письмо.

Простейшая структура ЭЦП

В самом простейшем виде электронная цифровая подпись — это некие сведения о себе, например фамилия, имя, отчество и должность, зашифрованные личным ключом. Каждый, кто владеет открытым ключом, сможет эти сведения прочитать и убедиться, кто является автором сообщения. Таким образом, в простейшем понимании ЭЦП — это средство идентификации отправителя. Однако на практике в ЭЦП включают не только сведения об отправителе, но и дополнительные данные. Мы рассмотрим их немного позже.

Понятие о компрометации ЭЦП

В общем случае, как средство идентификации партнера,, электронная цифровая подпись имеет более высокую надежность, чем традиционная рукописная подпись. Однако она тоже подвержена фальсификации. Чтобы фальсифицировать ЭЦП, злоумышленник должен тем или иным образом получить доступ к закрытому ключу. В таких случаях говорят о компрометации закрытого ключа, из которой вытекает компрометация электронной подписи, созданной с его помощью.

Закрытый ключ может быть скомпрометирован различными способами, которые можно условно классифицировать как традиционные и нетрадиционные. Традиционные способы компрометации, как правило, связаны с хищениями и другими противозаконными действиями:

• хищение ключа путем копирования в результате несанкционированного прямого физического или удаленного сетевого доступа к оборудованию, на котором он хранится;

• получение ключа в результате ответа на запрос, исполненный с признаками мошенничества или подлога;

• хищение ключа, вытекающее из хищения оборудования, на котором он хранился (даже если хищение оборудования производилось не с целью доступа к ключу);

• хищение ключа в результате сговора с лицами, имеющими право на его использование (даже рядовой факт увольнения сотрудника, имевшего доступ к закрытому ключу организации, тоже рассматривается как компрометация ключа).

Незаконность традиционных методов компрометации ключа позволяет в какой-то степени рассчитывать на то, что защиту ключа, хотя и опосредованную, обеспечивает законодательство. К сожалению, это не относится к нетрадиционным методам компрометации, основанным на реконструкции закрытого ключа по исходным данным, полученным вполне легально, в частности, по открытому ключу. В настоящее время доказать незаконность действий по реконструкции чужого закрытого ключа практически невозможно (по крайней мере, пока не произойдет событие незаконного использования реконструированного ключа). Предпосылками возможной реконструкции являются следующие обстоятельства:

• реконструктор имеет легальный доступ к открытому ключу, а он, как известно, связан с закрытым ключом определенными математическими соотношениями, так как вместе они образуют ключевую пару;

• он может экспериментировать не на случайных, а на специально подобранных сообщениях, подготовленных собственноручно так, как ему удобно;

• он имеет полный доступ к зашифрованным сообщениям, поскольку сам может создать их с помощью открытого ключа;

• ему известен метод шифрования и дешифрования, по которому работает программное средство ЭЦП (в общем случае алгоритм не скрывается а, наоборот, широко публикуется для всеобщего тестирования).

Понятие о криптостойкости средств ЭЦП

На первый взгляд, знание метода шифрования, открытой половины ключа, исходного и зашифрованного текстов дают злоумышленнику полную возможность реконструкции закрытого ключа. Это действительно так, но эта возможность только теоретическая! На практике процесс реконструкции упирается в наличие специальных аппаратных и программных средств, а также в огромные затраты вычислительного времени. Существует специальная отрасль науки, называемая криптоанализом. Она занимается разработкой методов, позволяющих:

а) воспроизводить зашифрованную информацию, то есть снимать с нее защиту;

б) оценивать качество защиты информации, то есть давать объективную оценку принятым методам защиты.

При использовании криптографии качество защиты определяется одновременно обоими компонентами, составляющими информацию: как методами, так и данными. Метод в данном случае заключен в алгоритме шифрования. Данные заключаются как в исходном сообщении, так и в ключе шифрования. Зашифрованное сообщение может слабо противостоять методам криптоанализа по двум причинам:

• из-за «слабости» алгоритма, лежащего в основе действия средства ЭЦП;

• из-за характерных особенностей ключа (неудачных свойств ключевой пары).

Два подхода к оценке криптостойкости алгоритмов

Прежде всего, следует обратить внимание на то, что обычный пользователь средств ЭЦП не может и не должен иметь понятия о том, какой криптостойкостью обладает алгоритм, которым он шифрует свою электронную подпись. С его точки зрения, в результате шифрования получается одинаково непонятная последовательность символов как в результате применения средств времен Юлия Цезаря, так и после применения самых современных средств ЭЦП.

О слабости используемых алгоритмов пользователь не узнает до тех пор, пока не будет слишком поздно, точно так же, как парашютист уже никогда не узнает, что именно не так было сделано при укладке парашюта. Парашютисты могут позволить себе укладывать парашюты лично, но пользователи средств ЭЦП не могут позволить себе лично разрабатывать программы, поэтому им нужны какие-то средства для оценки их надежности, не требующие специальных знаний. Для рядового пользователя такими средствами могут быть только сведения из независимых источников.

К проблеме оценки криптостойкости алгоритмов есть два подхода. Первый — централизованный, основанный на закрытости алгоритмов шифрования, и второй — децентрализованный, основанный на их открытости.

При централизованном подходе ответственность за надежность средств шифрования вообще и средств ЭЦП в частности берет на себя государство в лице органа, уполномоченного разрабатывать средства ЭЦП или давать оценку средствам, выполненным другими разработчиками. В этом случае защита может основываться на «закрытости» алгоритма.

С точки зрения государства, это наиболее простой, самый дешевый и легко контролируемый путь. Уполномоченный административный орган может сделать секретным алгоритм, рекомендуемый ко всеобщему применению, а использование других алгоритмов законодательно запретить. Это, конечно, затруднит реконструкцию закрытых ключей и подделку ЭЦП, но оставит массы потребителей в неведении об истинных свойствах защиты предложенного («навязанного») алгоритма. Массам останется только доверять административному органу, заявляющему, что алгоритм надежен.

Второй подход состоит в децентрализации. В этом случае алгоритм шифрования делается открытым. Он широко публикуется, и каждый может самостоятельно проверить его криптостойкость. Разумеется, рядовой потребитель не станет этого делать, но он может быть уверен в том, что множество специалистов, вооруженных и надлежащей техникой, и надлежащими методами, активно этим занимаются. Если они бессильны что-либо сделать, значит, на данный период развития технологии алгоритм можно считать надежным. Ему можно доверять, пока в открытой печати не появятся сообщения об его опровержении.

Принцип закрытости алгоритмов шифрования характерен для общественных структур, склонных к тоталитарному решению проблем. Он не ведет к совершенствованию алгоритмов, к честной и открытой конкуренции между ними, способствует сокрытию информации о слабостях системы защиты, консервации имеющихся уязвимостей и, таким образом, может поставить под удар пользователей системы.

Принцип открытости алгоритмов шифрования характерен для демократических обществ. Его главное достоинство в том, что он ведет к развитию науки, отбору в результате открытой конкуренции лучших и наиболее эффективных методов. Определенной слабостью открытых алгоритмов является массовость и целеустремленность атак, направленных на них, но это можно рассматривать и как массовое тестирование, что дает в результате качественный естественный отбор.

На практике, конечно, таких однозначных подходов не бывает. В любом обществе в одно время могут доминировать одни тенденции, в другое время — другие. Оба подхода могут по-разному сочетаться в разных средствах ЭЦП. Даже в одном обществе и в одно время могут в разных сферах применяться разные подходы. Одно дело — защита гражданской электронной почты, другое — служебный и финансовый документооборот предприятий, и, наконец, совсем иное дело — спецсредства, используемые там, где есть угроза безопасности государства.



Похожие документы:

  1. Правила электронного взаимодействия нко зао нрд москва 2016

    Документ
    ... создание электронной подписи, проверка электронной подписи, создание ключа электронной подписи и ключа проверки электронной подписи. Техническая ... – юридическое лицо. Для обеспечения ЭДО по ... Электронную почту направлять в НРД ЭД в тестовом режиме, ...
  2. «электронное правительство» в зеркале сми 1-11 июля 2014 Электронные госуслуги

    Документ
    ... подписать электронный запрос цифровой подписью. Также для предпринимателей и юридических ... электронного правительства, запущена в пилотном режиме ... разработкой программного обеспечения для финансовых ... есть полные юридические и технические возможности, ...
  3. Извещение о проведении открытого аукциона в электронной форме (2)

    Документация об аукционе
    ... науке и государственной научно-технической политике". Юридические лица включаются в ... часа работы в тревожном режиме. 6.3.4. Прокладка кабельной ... обеспечения государственных и муниципальных нужд" да (нет) Форма должна быть подписана электронной подписью ...
  4. Информация об Удостоверяющем Центре Лицензии ООО «ИнфоЦентр»

    Регламент
    ... электронной подписи; техническому обеспечению процедуры подтверждения подлинности электронной подписи в документах, представленных в электронной форме, по обращениям пользователей УЦ; техническому обеспечению ...
  5. Российская федерация федеральный закон о контрактной системе в сфере закупок товаров, работ, услуг для обеспечения государственных и муниципальных нужд

    Документ
    ... условия применения такого национального режима; 5) информацию о ... техническому перевооружению объектов капитального строительства на такое юридическое ... проверки электронных подписей и ключей усиленных неквалифицированных электронных подписей обеспечение ...

Другие похожие документы..