Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
проведения плановых проверок объектов защиты, правообладателями которых являются граждане, не являющиеся индивидуальными предпринимателями (за исключе...полностью>>
'Урок'
Информация в неживой природе В физике, которая изучает неживую природу, информация является мерой упорядоченности системы по шкале «хаос — порядок». О...полностью>>
'Техническое задание'
Результатом предоставляемых услуг должна быть система обеспечения транспортировки и хранения готовой продукции и материалов с высоким качеством (отсут...полностью>>
'Документ'

Главная > Документ

Сохрани ссылку в одной из сетей:
Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

министерство образования и науки российской федерации Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ
ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
»

Ю.П. Егоров, Ю.М. Лозинский, Е.И. Марр

МАТЕРИАЛОВЕДЕНИЕ

Лабораторный практикум

по материаловедению для студентов,

обучающихся по направлению 150700 «Машиностроение»

Рекомендовано в качестве учебного пособия
Редакционно-издательским советом
Томского политехнического университета

Томский политехнический университет

2013

УДК 620.18:669

ББК 34.62

М341

Авторы

Ю.П. Егоров, Ю.М. Лозинский, Е.И. Марр, Р.В. Роот, И.А. Хворова,

Ю.А. Евтюшкин, А.Г. Багинский В.П. Безбородов, Ж.Г. Ковалевская,

О.М. Утьев

М341 Материаловедение: учебное пособие / Ю.П. Егоров, Ю.М. Лозинский, Е.И. Марр и др.; Под ред. А.Г. Багинского; Томский политехнический университет. – Томск: Изд-во Томского политехнического университета, 2013. – 100 с.

В пособии рассматриваются современные способы исследования структуры и свойств металлических материалов; изложены закономерности формирования структуры и свойств металлических конструкционных материалов. Показана взаимосвязь между структурой и свойствами материалов. Даны современные представления о механизме упрочнения и разупрочнения металлов и сплавов. Рассмотрены широко применяемые и перспективные сплавы черных и цветных металлов. Пособие представляет собой лабораторный практикум по курсу «Материаловедение».

Пособие предназначено для студентов, обучающихся по направлению 150700 «Машиностроение».

УДК 620.18:669

ББК 34.62

Рецензенты

Заместитель технического директора ООО «Сибкабель»

Зиборов В. Ю.

Доктор технических наук

Зав. лабораторией физико-химии порошковой металлургии

Института физики прочности и материаловедения СО РАН

Прибытков Г. А.

© ФГБОУ ВПО НИ ТПУ, 2013
© Авторы, 2013
© Оформление. Издательство Томского
политехнического университета, 2013

ЛАБОРАТОРНАЯ РАБОТА № 1

МЕТОДЫ ИССЛЕДОВАНИЯ МЕТАЛЛОВ.

МЕТАЛЛОГРАФИЧЕСКИЙ АНАЛИЗ

Цель работы

1. Ознакомиться с приборами и методами исследования металлов.

2. Изучить методы исследования строения металлов.

3. Изучить работу металлографических микроскопов.

4. Научиться готовить образцы, анализировать и фиксировать макро- и микроструктуру.

Оборудование и материалы для выполнения работы

Оборудование: прессы Бринелля, Роквелла, Виккерса, маятниковый копер, разрывная машина, шлифовально-полировальные станки “Нерис”, оптические микроскопы МИМ-7, ММУ-3, растровый электронный микроскоп РЭМ-200, рентгеновский дифрактометр ДРОН-2,0.

Материалы: образцы металлов и сплавов, абразивная бумага, растворы кислот.

Порядок выполнения лабораторной работы

1. Прочитать теоретическую часть данного пособия.

2. Ознакомиться с приборами и их работой.

3. В соответствии с заданием приготовить макро- или микрошлиф, выявить структуру образцов, зарисовать ее или сфотографировать.

4. Написать отчет.

Основные сведения по теме работы

I. МЕТОДЫ ИССЛЕДОВАНИЯ МЕТАЛЛОВ

Основной целью любого метода исследования является получение достоверной информации о строении и свойствах изучаемого материала. Чем больше и разнообразнее информация, тем точнее можно предвидеть поведение материала в реальных конструкциях и целенаправленнее изменять его свойства различными видами обработки.

По характеру получаемой информации методы исследования металлов и сплавов можно разделить на три группы.

1. Исследование механических свойств.

2. Исследование макро- и микроструктуры (металлографический анализ).

3. Физические методы исследования.

Как правило, процесс исследования металлов ведут методами первой группы затем второй и далее третьей. В данной лабораторной работе необходимо лишь познакомиться с приборами и методами первой и третьей групп и изучить методы исследования структуры металлов.

II. ОПРЕДЕЛЕНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ МЕТАЛЛОВ

Основными механическими свойствами металлов являются прочность, упругость, пластичность, твердость и вязкость. Механические свойства металлов определяют испытанием специальных образцов на соответствующих испытательных машинах.

В зависимости от характера действия нагрузки испытания могут быть статическими, динамическими, циклическими. При статических испытаниях нагружение проводится плавно, в отличие от резкого нагружения при динамических испытаниях. При циклических испытаниях изменяются направления действия нагрузки или ее величина, или оба фактора вместе.

К статическим испытаниям обычно относятся испытания на растяжение и сжатие, проводимые на разрывных машинах, и испытания твердости, проводимые на приборах Бринелля, Роквелла, Виккерса.

К динамическим испытаниям относятся испытания на ударный изгиб, которые проводятся на маятниковых копрах.

Циклические испытания проводятся на машинах с циклически изменяемой нагрузкой для определения сопротивляемости металлов усталостному разрушению.

III. ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

Для изучения структуры металлов и сплавов используются различные физические методы, позволяющие на основании регистрации известных физических величин анализировать структуру и состояние вещества, а также выявлять характер превращений, протекающих в твердом теле под воздействием внешних причин (нагрев, охлаждение, деформация и др.).

К этим методам относятся электронная микроскопия, рентгеноструктурный анализ, резистометрический, дилатометрический, магнитный и другие методы.

В данной работе необходимо познакомиться с установками и их работой для проведения электронно-микроскопического и рентгеноструктурного анализов.

Электронно-микроскопический анализ относится к прямому методу наблюдения и изучения структуры вещества. Анализ проводится на просвечивающих и растровых электронных микроскопах. По темпам развития и количеству моделей РЭМ опережает просвечивающие электронные микроскопы, хотя последние разработаны и используются значительно раньше РЭМ.

В лабораторной работе необходимо ознакомиться с прибором РЭМ-200 и его работой.

В растровых электронных микроскопах поверхность исследуемого образца облучается стабильным во времени тонко сфокусированным (диаметр до 5–10 нм) электронным зондом, совершающим возвратно-поступательное движение по линии или развертывающимся в растр. Растром называется совокупность близко расположенных параллельных линий движения зонда, по которым зонд сканирует (обегает) выбранный участок на поверхности образца. При взаимодействии зонда с веществом образца в каждой точке поверхности происходит ряд эффектов, которые регистрируются датчиками. Эти эффекты служат основой для получения информации о строении исследуемых объектов. Изображение объекта формируется на экране электронно-лучевой трубки, с которого фиксируется на фотографическую пленку.

Рентгеноструктурный анализ основан на явлении интерференции рентгеновских лучей, отраженных от атомных плоскостей кристалла. Этот метод позволяет изучить фазовый состав сплава, определить степень совершенства кристаллов, их ориентировку, определить оптимальные режимы технологии изготовления и обработки разнообразных кристаллических материалов. В настоящее время наибольшее распространение в качестве рентгеновских аппаратов получили дифрактометры, которые позволяют регистрировать интенсивность отраженного рентгеновского излучения на диаграммную ленту самописца. ДРОН-2,0, ДРОН-3,0 ДРОН-3М – дифрактометры рентгеновские общего назначения, выпускаемые в нашей стране, широко используется в научных и заводских лабораториях.

IV. МЕТАЛЛОГРАФИЧЕСКИЙ АНАЛИЗ

Металлографический анализ проводится с целью изучения влияния химического состава и различных видов обработки на структуру металла.

Различают макро- и микроструктуру. Соответственно, металлографический анализ подразделяется на макроанализ и микроанализ.

Макроструктура – это строение металла, видимое невооруженным глазом или при небольшом увеличении (до 30 крат).

Микроструктура – это строение металла или сплава, видимое при больших увеличениях (более 50 крат) с помощью микроскопа.

ИССЛЕДОВАНИЕ МАКРОСТРУКТУРЫ (МАКРОАНАЛИЗ)

Макроанализ дает представление об общем строении металла и позволяет оценить его качество после различных видов обработки: литья, обработки давлением, сварки, термической и химико-термической обработки.

Не выявляя подробностей строения, макроанализ позволяет определить участки металла, требующие дальнейшего микроскопического исследования. Макроанализ позволяет определить:

1. Нарушения сплошности металла: центральную пористость, свищи, подкорковые пузыри, трещины, непровары и газовые пузыри при сварке;

2. Дендритное строение, размеры и ориентацию зерен в литом состоянии;

3. Химическую неоднородность литого металла – ликвацию (исследуется макрошлиф);

4. Волокнистое строение деформированного металла;

5. Вид излома: вязкий, хрупкий, нафталинистый, камневидный;

6. Глубину слоя после химико-термической обработки (исследуется излом).

Макроанализ проводят на продольных и поперечных макрошлифах (темплетах) и изломах. Для успешного выполнения макроанализа необходим выбор наиболее характерного для изучаемого изделия сечения или излома. Вырезанные темплеты подвергают механической обработке, химическому травлению и исследованию.

Методы макротравления подразделяют на три группы: глубокого травления; поверхностного травления; отпечатков. Структура, выявляемая глубоким травлением, слабо зависит от подготовки поверхности образца; поверхностное травление или метод отпечатков требует более тщательной подготовки поверхности. Способы макроанализа различны в зависимости от состава сплава и задач, стоящих перед исследователем. Для многих марок стали, с целью выявления дефектов, нарушающих сплошность, применяют горячий (60–80 С) 50-% водный раствор соляной кислоты. Темплеты травят в течение 5–45 мин. до четкого выявления макроструктуры – это глубокое травление.

Химическую неоднородность стали, например, ликвацию фосфора, серы, свинца определяют методом поверхностного травления и отпечатков.

При необходимости полного макроскопического исследования, а также определения нарушений сплошности металла и дефектов строения целесообразно придерживаться следующей последовательности; сначала травить образец реактивом поверхностного травления, затем снова шлифовать и определять распределение серы по отпечатку на фотобумаге, после чего производить глубокое травление для определения нарушений сплошности.

МИКРОСКОПИЧЕСКИЙ АНАЛИЗ (МИКРОАНАЛИЗ)

Микроскопический анализ заключается в исследовании структуры специально подготовленных образцов (микрошлифов) при увеличениях от 30–50 до 1500–1800 крат.

Микроанализ проводят с целью определения:

1. Количества, размеров и типа структурных составляющих;

2. Фазового состава сталей и сплавов;

3. Связи химического состава, условий производства и обработки сплава с его микроструктурой и свойствами.

Для проведения высококвалифицированного микроанализа необходимы знания не только в области металлографии, но и в методике приготовления микрошлифов, в устройстве микроскопов и методах микроскопического анализа.

Приготовление микрошлифа обычно включает следующие основные операции.

1. Вырезку образцов и подготовку поверхности.

2. Шлифование.

3. Полирование.

4. Травление.

Выбор числа образцов, места вырезки и сечения материала, по которому проходит плоскость микрошлифа, определяется целью металлографического исследования, размерами, формой и особенностями структуры изучаемого объекта.

Наиболее удобны простые формы образцов следующих размеров: цилиндр или параллепипед с диаметром или стороной основания 10–20 мм и высотой 10–15 мм. Образцы малых размеров (лента, проволока) или сложной конфигурации после вырезки для изготовления шлифов помещают в пластмассы или легкоплавкие сплавы, используя заливку или запрессовку в цилиндрические обоймы. Наиболее часто для холодной заделки шлифов используют эпоксидные смолы. Они обладают достаточной твердостью, малой объемной усадкой при отверждении и хорошо соединяются с большинством металлических образцов.

Обработку шлифа на плоскость производят с помощью напильника или наждачного круга. Затем производят шлифовку вручную или на шлифовальных станках. Шлифование осуществляют на 4–5 номерах наждачной бумаги, последовательно уменьшая размер абразива. Направление движения образца по наждачной бумаге при смене номера бумаги следует изменять на 90, а шлифование на одном номере вести до исчезновения рисок от предыдущей шлифовальной бумаги. При смене номера бумаги следует удалять со шлифа частички абразива. После шлифования на последней бумаге шлиф тщательно промывают в воде, чтобы частички абразива не попали на полировальный круг.

При шлифовании очень мягких металлов в ряде случаев шкурку предварительно смачивают в керосине или натирают парафином (например, при изготовлении микрошлифов из алюминия), чтобы свести к минимуму вдавливание абразивных частиц в поверхность шлифов.

Полирование служит для удаления мелких рисок, оставшихся после шлифования, и получения гладкой зеркальной поверхности шлифа. Применяют механическое или электрохимическое полирование.

Механическое полирование производят на вращающемся круге с натянутым полировальным материалом (фетр, сукно, драп), на который непрерывно или периодически наносят очень мелкий абразив в виде суспензии в воде. В качестве абразивов применяют оксид хрома, оксид алюминия и оксид железа. Все более широкое использование находят полировальные алмазные пасты, которые наносят на специальную ткань или бумагу.

Основные характеристики алмазных паст приведены в табл. 1.

Полирование ведут до получения зеркальной поверхности, и оно считается законченным, когда на поверхности шлифа под микроскопом не наблюдаются риски или царапины. После полировки шлиф промывают в воде или спирте и сушат полированную поверхность фильтровальной бумагой.

Электрохимическое полирование основано на использовании процесса анодного растворения металла, который при определенных условиях протекает с образованием гладкой блестящей поверхности. Образец после механического шлифования погружают в качестве анода в электролизную ванну и выдерживают при заданном режиме (напряжении, плотности тока и температуре электролита) определенное время. Катодом обычно служит пластинка, изготовленная из нержавеющей стали.

Преимуществом электрополировки является отсутствие на поверхности шлифа деформированного слоя, образующегося при шлифовании или механическом полировании. Этот метод особенно подходит для полирования шлифов из мягких и легко наклепывающихся сплавов. К недостаткам электрополирования относятся: чувствительность к неоднородности химического состава, преимущественное растворение металла вокруг пустот и неметаллических включений, краевые эффекты.

Таблица 1

Основные характеристики полировальных алмазных паст

Обозначение зернистости по ГОСТ 9206-70

Размеры абразивных

частиц, мкм

Концентрация алмазного порошка, %

Цвет пасты и этикетки

нормальная

Н

повышенная П

60/40

60-40

10

20

красный

40/28

40-28

7

14

красный

28/20

28-20

7

14

голубой

20/14

20-14

5

10

голубой

14/10

14-10

5

10

голубой

10/7

10-7

3

6

зеленый

7/5

7-5

3

6

зеленый

5/3

5-3

2

4

зеленый

3/2

3-2

2

4

желтый

2/1

2-1

1

2

желтый

1/0

1-0

1

2

желтый

Для выявления структуры отполированную поверхность образца подвергают травлению реактивами, различающимися по своему воздействию на поверхность металла. В Приложении 1 приведены наиболее употребляемые реактивы для выявления микроструктуры различных сплавов. Под воздействием реактива происходит растворение одних фаз, окисление и окрашивание других. В результате созданной различной отражающей способности фаз, самих зерен и их границ можно увидеть под микроскопом очертания зерен и различных фаз, определить их взаимное расположение; по цвету, форме и размерам определить присутствующие в сплаве фазы, т. е. выявить микроструктуру сплава.

Качество травления проверяют под микроскопом при том же увеличении, при котором предполагается изучение шлифа. Если поверхность шлифа, видимая под микроскопом, очень светлая, нет четкости контура структуры, то шлиф недотравлен; тогда проводят повторное травление. Если поверхность шлифа темная, с широкими темными границами структурных составляющих, то шлиф перетравлен; тогда его необходимо переполировать с повторным травлением. После окончания травления шлиф промывают проточной водой, спиртом и высушивают прикладыванием фильтровальной бумаги.

Изучение микроструктуры осуществляют с помощью световых металлографических микроскопов.

Впервые микроскоп для исследования строения металлов был применен в 1831 г. русским инженером П.П. Аносовым, изучавшим булатную сталь.

Металлографический микроскоп позволяет рассматривать непрозрачные тела в отраженном свете. В этом его основное отличие от биологического микроскопа.

В металлографических микроскопах освещение объекта осуществляется через объектив. На рис. 1 показаны две принципиальные схемы освещения шлифа.

Лучи света от источника света 1 попадают на призму полного внутреннего отражения 2 (рис. 1, а) или полупрозрачную плоско-параллельную пластинку 2 (рис. 1, б). Их назначение направить поток света в объектив 3 и через него – на шлиф 4.Отраженные от шлифа лучи попадают в объектив 3, далее в окуляр 5 и от него в глаз человека.




Похожие документы:

  1. Методические указания к выполнению лабораторных работ по курсам «Технологические процессы в машиностроении» и «Технология конструкционных материалов» для студентов, обучающихся по направлению 150700 «Машиностроение»

    Методические указания
    ... машиностроении» и «Технология конструкционных материалов» для студентов, обучающихся по направлению 150700 «Машиностроение» Издательство Томского политехнического университета 2012 УДК 620.18:669 ... Эти станки предназначены для обработки крупногабаритных ...

Другие похожие документы..